Cargando…

Normal forms of dispersive scalar Poisson brackets with two independent variables

We classify the dispersive Poisson brackets with one dependent variable and two independent variables, with leading order of hydrodynamic type, up to Miura transformations. We show that, in contrast to the case of a single independent variable for which a well-known triviality result exists, the Miu...

Descripción completa

Detalles Bibliográficos
Autores principales: Carlet, Guido, Casati, Matteo, Shadrin, Sergey
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6133259/
https://www.ncbi.nlm.nih.gov/pubmed/30220777
http://dx.doi.org/10.1007/s11005-018-1076-x
Descripción
Sumario:We classify the dispersive Poisson brackets with one dependent variable and two independent variables, with leading order of hydrodynamic type, up to Miura transformations. We show that, in contrast to the case of a single independent variable for which a well-known triviality result exists, the Miura equivalence classes are parametrised by an infinite number of constants, which we call numerical invariants of the brackets. We obtain explicit formulas for the first few numerical invariants.