Cargando…

RETRACTED ARTICLE: Identification of protein kinase inhibitors to reprogram breast cancer cells

Direct reversion of cancers into normal-like tissues is an ideal strategy for cancer treatment. Recent reports have showed that defined transcription factors can induce reprogramming of cancer cells into pluripotent stem cells, supporting this notion. Here, we have developed a reprogramming method t...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Jie, Zhang, Fan, You, Meng, Yang, Qin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6133942/
https://www.ncbi.nlm.nih.gov/pubmed/30206213
http://dx.doi.org/10.1038/s41419-018-1002-2
Descripción
Sumario:Direct reversion of cancers into normal-like tissues is an ideal strategy for cancer treatment. Recent reports have showed that defined transcription factors can induce reprogramming of cancer cells into pluripotent stem cells, supporting this notion. Here, we have developed a reprogramming method that uses a conceptually unique strategy for breast cancer cell treatment. We have screened a kinase inhibitor library and found that Rho-associated protein kinase (ROCK) and mammalian target of rapamycin (mTOR) kinase inhibitors can substitute for all transcription factors to be sufficient to reprogram breast cancer cells into progenitor cells. Furthermore, ROCK–mTOR inhibitors could reprogram breast cancer cells to another terminal lineage-adipogenic cells. Genome-wide transcriptional analysis shows that the induced fat-like cells have a profile different from breast cancer cells and similar to that of normal adipocytes. In vitro and in vivo tumorigenesis assays have shown that induced fat-like cells lose proliferation and tumorigenicity. Moreover, reprogramming treatment with ROCK–mTOR inhibitors prevents breast cancer local recurrence in mice. Currently, ROCK–mTOR inhibitors are already used as antitumor drugs in patients, thus, this reprogramming strategy has significant potential to move rapidly toward clinical trials for breast cancer treatment.