Cargando…
A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI features
BACKGROUND: Recent studies showed preliminary data on associations of MRI-based imaging phenotypes of breast tumours with breast cancer molecular, genomic, and related characteristics. In this study, we present a comprehensive analysis of this relationship. METHODS: We analysed a set of 922 patients...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6134102/ https://www.ncbi.nlm.nih.gov/pubmed/30033447 http://dx.doi.org/10.1038/s41416-018-0185-8 |
Sumario: | BACKGROUND: Recent studies showed preliminary data on associations of MRI-based imaging phenotypes of breast tumours with breast cancer molecular, genomic, and related characteristics. In this study, we present a comprehensive analysis of this relationship. METHODS: We analysed a set of 922 patients with invasive breast cancer and pre-operative MRI. The MRIs were analysed by a computer algorithm to extract 529 features of the tumour and the surrounding tissue. Machine-learning-based models based on the imaging features were trained using a portion of the data (461 patients) to predict the following molecular, genomic, and proliferation characteristics: tumour surrogate molecular subtype, oestrogen receptor, progesterone receptor and human epidermal growth factor status, as well as a tumour proliferation marker (Ki-67). Trained models were evaluated on the set of the remaining 461 patients. RESULTS: Multivariate models were predictive of Luminal A subtype with AUC = 0.697 (95% CI: 0.647–0.746, p < .0001), triple negative breast cancer with AUC = 0.654 (95% CI: 0.589–0.727, p < .0001), ER status with AUC = 0.649 (95% CI: 0.591–0.705, p < .001), and PR status with AUC = 0.622 (95% CI: 0.569–0.674, p < .0001). Associations between individual features and subtypes we also found. CONCLUSIONS: There is a moderate association between tumour molecular biomarkers and algorithmically assessed imaging features. |
---|