Cargando…
Variability in eukaryotic initiation factor iso4E in Brassica rapa influences interactions with the viral protein linked to the genome of Turnip mosaic virus
Plant potyviruses require eukaryotic translation initiation factors (eIFs) such as eIF4E and eIF(iso)4E to replicate and spread. When Turnip mosaic virus (TuMV) infects a host plant, its viral protein linked to the genome (VPg) needs to interact with eIF4E or eIF(iso)4E to initiate translation. TuMV...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6134127/ https://www.ncbi.nlm.nih.gov/pubmed/30206242 http://dx.doi.org/10.1038/s41598-018-31739-1 |
Sumario: | Plant potyviruses require eukaryotic translation initiation factors (eIFs) such as eIF4E and eIF(iso)4E to replicate and spread. When Turnip mosaic virus (TuMV) infects a host plant, its viral protein linked to the genome (VPg) needs to interact with eIF4E or eIF(iso)4E to initiate translation. TuMV utilizes BraA.eIF4E.a, BraA.eIF4E.c, BraA.eIF(iso)4E.a, and BraA.eIF(iso)4E.c of Brassica rapa to initiate translation in Arabidopsis thaliana. In this study, the BraA.eIF4E.a, BraA.eIF4E.c, BraA.eIF(iso)4E.a, and BraA.eIF(iso)4E.c genes were cloned and sequenced from eight B. rapa lines, namely, two BraA.eIF4E.a alleles, four BraA.eIF4E.c alleles, four BraA.eIF(iso)4E.a alleles, and two BraA.eIF(iso)4E.c alleles. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses indicated that TuMV VPg could not interact with eIF4E, but only with eIF(iso)4E of B. rapa. In addition, the VPgs of the different TuMV isolates interacted with various eIF(iso)4E copies in B. rapa. In particular, TuMV-UK1/CDN1 VPg only interacted with BraA.eIF(iso)4E.c, not with BraA.eIF(iso)4E.a. Some single nucleotide polymorphisms (SNPs) were identified that may have affected the interaction between eIF(iso)4E and VPg such as the SNP T(106)C in BraA.eIF(iso)4E.c and the SNP A(154)C in VPg. Furthermore, a three-dimensional structural model of the BraA.eIF(iso)4E.c-1 protein was constructed to identify the specific conformation of the variable amino acids from BraA.eIF(iso)4E.c. The 36(th) amino acid in BraA.eIF(iso)4E.c is highly conserved and may play an important role in establishing protein structural stability. The findings of the present study may lay the foundation for future investigations on the co-evolution of TuMV and eIF(iso)4E. |
---|