Cargando…

Comprehensive Functional Analysis of the Enterococcus faecalis Core Genome Using an Ordered, Sequence-Defined Collection of Insertional Mutations in Strain OG1RF

Enterococcus faecalis is a common commensal bacterium in animal gastrointestinal (GI) tracts and a leading cause of opportunistic infections of humans in the modern health care setting. E. faecalis OG1RF is a plasmid-free strain that contains few mobile elements yet retains the robust survival chara...

Descripción completa

Detalles Bibliográficos
Autores principales: Dale, Jennifer L., Beckman, Kenneth B., Willett, Julia L. E., Nilson, Jennifer L., Palani, Nagendra P., Baller, Joshua A., Hauge, Adam, Gohl, Daryl M., Erickson, Raymond, Manias, Dawn A., Sadowsky, Michael J., Dunny, Gary M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6134198/
https://www.ncbi.nlm.nih.gov/pubmed/30225373
http://dx.doi.org/10.1128/mSystems.00062-18
_version_ 1783354634303176704
author Dale, Jennifer L.
Beckman, Kenneth B.
Willett, Julia L. E.
Nilson, Jennifer L.
Palani, Nagendra P.
Baller, Joshua A.
Hauge, Adam
Gohl, Daryl M.
Erickson, Raymond
Manias, Dawn A.
Sadowsky, Michael J.
Dunny, Gary M.
author_facet Dale, Jennifer L.
Beckman, Kenneth B.
Willett, Julia L. E.
Nilson, Jennifer L.
Palani, Nagendra P.
Baller, Joshua A.
Hauge, Adam
Gohl, Daryl M.
Erickson, Raymond
Manias, Dawn A.
Sadowsky, Michael J.
Dunny, Gary M.
author_sort Dale, Jennifer L.
collection PubMed
description Enterococcus faecalis is a common commensal bacterium in animal gastrointestinal (GI) tracts and a leading cause of opportunistic infections of humans in the modern health care setting. E. faecalis OG1RF is a plasmid-free strain that contains few mobile elements yet retains the robust survival characteristics, intrinsic antibiotic resistance, and virulence traits characteristic of most E. faecalis genotypes. To facilitate interrogation of the core enterococcal genetic determinants for competitive fitness in the GI tract, biofilm formation, intrinsic antimicrobial resistance, and survival in the environment, we generated an arrayed, sequence-defined set of chromosomal transposon insertions in OG1RF. We used an orthogonal pooling strategy in conjunction with Illumina sequencing to identify a set of mutants with unique, single Himar-based transposon insertions. The mutants contained insertions in 1,926 of 2,651 (72.6%) annotated open reading frames and in the majority of hypothetical protein-encoding genes and intergenic regions greater than 100 bp in length, which could encode small RNAs. As proof of principle of the usefulness of this arrayed transposon library, we created a minimal input pool containing 6,829 mutants chosen for maximal genomic coverage and used an approach that we term SMarT (sequence-defined mariner technology) transposon sequencing (TnSeq) to identify numerous genetic determinants of bile resistance in E. faecalis OG1RF. These included several genes previously associated with bile acid resistance as well as new loci. Our arrayed library allows functional screening of a large percentage of the genome with a relatively small number of mutants, reducing potential effects of bottlenecking, and enables immediate recovery of mutants following competitions. IMPORTANCE The robust ability of Enterococcus faecalis to survive outside the host and to spread via oral-fecal transmission and its high degree of intrinsic and acquired antimicrobial resistance all complicate the treatment of hospital-acquired enterococcal infections. The conserved E. faecalis core genome serves as an important genetic scaffold for evolution of this bacterium in the modern health care setting and also provides interesting vaccine and drug targets. We used an innovative pooling/sequencing strategy to map a large collection of arrayed transposon insertions in E. faecalis OG1RF and generated an arrayed library of defined mutants covering approximately 70% of the OG1RF genome. Then, we performed high-throughput transposon sequencing experiments using this library to determine core genomic determinants of bile resistance in OG1RF. This collection is a valuable resource for comprehensive, functional enterococcal genomics using both traditional and high-throughput approaches and enables immediate recovery of mutants of interest.
format Online
Article
Text
id pubmed-6134198
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-61341982018-09-17 Comprehensive Functional Analysis of the Enterococcus faecalis Core Genome Using an Ordered, Sequence-Defined Collection of Insertional Mutations in Strain OG1RF Dale, Jennifer L. Beckman, Kenneth B. Willett, Julia L. E. Nilson, Jennifer L. Palani, Nagendra P. Baller, Joshua A. Hauge, Adam Gohl, Daryl M. Erickson, Raymond Manias, Dawn A. Sadowsky, Michael J. Dunny, Gary M. mSystems Resource Report Enterococcus faecalis is a common commensal bacterium in animal gastrointestinal (GI) tracts and a leading cause of opportunistic infections of humans in the modern health care setting. E. faecalis OG1RF is a plasmid-free strain that contains few mobile elements yet retains the robust survival characteristics, intrinsic antibiotic resistance, and virulence traits characteristic of most E. faecalis genotypes. To facilitate interrogation of the core enterococcal genetic determinants for competitive fitness in the GI tract, biofilm formation, intrinsic antimicrobial resistance, and survival in the environment, we generated an arrayed, sequence-defined set of chromosomal transposon insertions in OG1RF. We used an orthogonal pooling strategy in conjunction with Illumina sequencing to identify a set of mutants with unique, single Himar-based transposon insertions. The mutants contained insertions in 1,926 of 2,651 (72.6%) annotated open reading frames and in the majority of hypothetical protein-encoding genes and intergenic regions greater than 100 bp in length, which could encode small RNAs. As proof of principle of the usefulness of this arrayed transposon library, we created a minimal input pool containing 6,829 mutants chosen for maximal genomic coverage and used an approach that we term SMarT (sequence-defined mariner technology) transposon sequencing (TnSeq) to identify numerous genetic determinants of bile resistance in E. faecalis OG1RF. These included several genes previously associated with bile acid resistance as well as new loci. Our arrayed library allows functional screening of a large percentage of the genome with a relatively small number of mutants, reducing potential effects of bottlenecking, and enables immediate recovery of mutants following competitions. IMPORTANCE The robust ability of Enterococcus faecalis to survive outside the host and to spread via oral-fecal transmission and its high degree of intrinsic and acquired antimicrobial resistance all complicate the treatment of hospital-acquired enterococcal infections. The conserved E. faecalis core genome serves as an important genetic scaffold for evolution of this bacterium in the modern health care setting and also provides interesting vaccine and drug targets. We used an innovative pooling/sequencing strategy to map a large collection of arrayed transposon insertions in E. faecalis OG1RF and generated an arrayed library of defined mutants covering approximately 70% of the OG1RF genome. Then, we performed high-throughput transposon sequencing experiments using this library to determine core genomic determinants of bile resistance in OG1RF. This collection is a valuable resource for comprehensive, functional enterococcal genomics using both traditional and high-throughput approaches and enables immediate recovery of mutants of interest. American Society for Microbiology 2018-09-11 /pmc/articles/PMC6134198/ /pubmed/30225373 http://dx.doi.org/10.1128/mSystems.00062-18 Text en Copyright © 2018 Dale et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Resource Report
Dale, Jennifer L.
Beckman, Kenneth B.
Willett, Julia L. E.
Nilson, Jennifer L.
Palani, Nagendra P.
Baller, Joshua A.
Hauge, Adam
Gohl, Daryl M.
Erickson, Raymond
Manias, Dawn A.
Sadowsky, Michael J.
Dunny, Gary M.
Comprehensive Functional Analysis of the Enterococcus faecalis Core Genome Using an Ordered, Sequence-Defined Collection of Insertional Mutations in Strain OG1RF
title Comprehensive Functional Analysis of the Enterococcus faecalis Core Genome Using an Ordered, Sequence-Defined Collection of Insertional Mutations in Strain OG1RF
title_full Comprehensive Functional Analysis of the Enterococcus faecalis Core Genome Using an Ordered, Sequence-Defined Collection of Insertional Mutations in Strain OG1RF
title_fullStr Comprehensive Functional Analysis of the Enterococcus faecalis Core Genome Using an Ordered, Sequence-Defined Collection of Insertional Mutations in Strain OG1RF
title_full_unstemmed Comprehensive Functional Analysis of the Enterococcus faecalis Core Genome Using an Ordered, Sequence-Defined Collection of Insertional Mutations in Strain OG1RF
title_short Comprehensive Functional Analysis of the Enterococcus faecalis Core Genome Using an Ordered, Sequence-Defined Collection of Insertional Mutations in Strain OG1RF
title_sort comprehensive functional analysis of the enterococcus faecalis core genome using an ordered, sequence-defined collection of insertional mutations in strain og1rf
topic Resource Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6134198/
https://www.ncbi.nlm.nih.gov/pubmed/30225373
http://dx.doi.org/10.1128/mSystems.00062-18
work_keys_str_mv AT dalejenniferl comprehensivefunctionalanalysisoftheenterococcusfaecaliscoregenomeusinganorderedsequencedefinedcollectionofinsertionalmutationsinstrainog1rf
AT beckmankennethb comprehensivefunctionalanalysisoftheenterococcusfaecaliscoregenomeusinganorderedsequencedefinedcollectionofinsertionalmutationsinstrainog1rf
AT willettjuliale comprehensivefunctionalanalysisoftheenterococcusfaecaliscoregenomeusinganorderedsequencedefinedcollectionofinsertionalmutationsinstrainog1rf
AT nilsonjenniferl comprehensivefunctionalanalysisoftheenterococcusfaecaliscoregenomeusinganorderedsequencedefinedcollectionofinsertionalmutationsinstrainog1rf
AT palaninagendrap comprehensivefunctionalanalysisoftheenterococcusfaecaliscoregenomeusinganorderedsequencedefinedcollectionofinsertionalmutationsinstrainog1rf
AT ballerjoshuaa comprehensivefunctionalanalysisoftheenterococcusfaecaliscoregenomeusinganorderedsequencedefinedcollectionofinsertionalmutationsinstrainog1rf
AT haugeadam comprehensivefunctionalanalysisoftheenterococcusfaecaliscoregenomeusinganorderedsequencedefinedcollectionofinsertionalmutationsinstrainog1rf
AT gohldarylm comprehensivefunctionalanalysisoftheenterococcusfaecaliscoregenomeusinganorderedsequencedefinedcollectionofinsertionalmutationsinstrainog1rf
AT ericksonraymond comprehensivefunctionalanalysisoftheenterococcusfaecaliscoregenomeusinganorderedsequencedefinedcollectionofinsertionalmutationsinstrainog1rf
AT maniasdawna comprehensivefunctionalanalysisoftheenterococcusfaecaliscoregenomeusinganorderedsequencedefinedcollectionofinsertionalmutationsinstrainog1rf
AT sadowskymichaelj comprehensivefunctionalanalysisoftheenterococcusfaecaliscoregenomeusinganorderedsequencedefinedcollectionofinsertionalmutationsinstrainog1rf
AT dunnygarym comprehensivefunctionalanalysisoftheenterococcusfaecaliscoregenomeusinganorderedsequencedefinedcollectionofinsertionalmutationsinstrainog1rf