Cargando…
Lack of 17β-estradiol reduces sensitivity to insulin in the liver and muscle of male mice
The importance of estrogens for glucose homeostasis has been demonstrated by clinical, pharmacological, and experimental studies. Male mice lacking the aromatase gene (ArKO mice), which encodes an enzyme involved in estrogen synthesis, develop glucose- and insulin-intolerance. However, it remains un...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6134327/ https://www.ncbi.nlm.nih.gov/pubmed/30211334 http://dx.doi.org/10.1016/j.heliyon.2018.e00772 |
_version_ | 1783354647878041600 |
---|---|
author | Toda, Katsumi Toda, Akiko Ono, Masafumi Saibara, Toshiji |
author_facet | Toda, Katsumi Toda, Akiko Ono, Masafumi Saibara, Toshiji |
author_sort | Toda, Katsumi |
collection | PubMed |
description | The importance of estrogens for glucose homeostasis has been demonstrated by clinical, pharmacological, and experimental studies. Male mice lacking the aromatase gene (ArKO mice), which encodes an enzyme involved in estrogen synthesis, develop glucose- and insulin-intolerance. However, it remains unclear whether insulin signaling is actually impaired in the liver and muscle of ArKO mice. We examined the effects of estrogen-deficiency on insulin signaling by quantifying phosphorylation levels of protein kinase B (Akt) in the liver and muscle and by examining the expression levels of insulin-target genes in the liver. Insulin administration enhanced phosphorylation levels of Akt in the liver and muscle of wild-type (WT) mice, ArKO mice, and ArKO mice supplemented with 17β-estradiol (E2), but insulin was less effective in ArKO mice. Gene expression analysis revealed that alterations induced by insulin in WT liver were also observed in ArKO liver, but the degree of altered expression in a subset of genes was smaller in ArKO mice than in WT mice. E2 supplementation improved the insulin responses of some genes in ArKO mice. Thus, these findings suggest that insulin signaling in the liver and muscle of ArKO mice is less efficient than in WT mice, which contributes to whole-body glucose intolerance in ArKO mice. |
format | Online Article Text |
id | pubmed-6134327 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-61343272018-09-12 Lack of 17β-estradiol reduces sensitivity to insulin in the liver and muscle of male mice Toda, Katsumi Toda, Akiko Ono, Masafumi Saibara, Toshiji Heliyon Article The importance of estrogens for glucose homeostasis has been demonstrated by clinical, pharmacological, and experimental studies. Male mice lacking the aromatase gene (ArKO mice), which encodes an enzyme involved in estrogen synthesis, develop glucose- and insulin-intolerance. However, it remains unclear whether insulin signaling is actually impaired in the liver and muscle of ArKO mice. We examined the effects of estrogen-deficiency on insulin signaling by quantifying phosphorylation levels of protein kinase B (Akt) in the liver and muscle and by examining the expression levels of insulin-target genes in the liver. Insulin administration enhanced phosphorylation levels of Akt in the liver and muscle of wild-type (WT) mice, ArKO mice, and ArKO mice supplemented with 17β-estradiol (E2), but insulin was less effective in ArKO mice. Gene expression analysis revealed that alterations induced by insulin in WT liver were also observed in ArKO liver, but the degree of altered expression in a subset of genes was smaller in ArKO mice than in WT mice. E2 supplementation improved the insulin responses of some genes in ArKO mice. Thus, these findings suggest that insulin signaling in the liver and muscle of ArKO mice is less efficient than in WT mice, which contributes to whole-body glucose intolerance in ArKO mice. Elsevier 2018-09-11 /pmc/articles/PMC6134327/ /pubmed/30211334 http://dx.doi.org/10.1016/j.heliyon.2018.e00772 Text en © 2018 The Authors. Published by Elsevier Ltd. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Toda, Katsumi Toda, Akiko Ono, Masafumi Saibara, Toshiji Lack of 17β-estradiol reduces sensitivity to insulin in the liver and muscle of male mice |
title | Lack of 17β-estradiol reduces sensitivity to insulin in the liver and muscle of male mice |
title_full | Lack of 17β-estradiol reduces sensitivity to insulin in the liver and muscle of male mice |
title_fullStr | Lack of 17β-estradiol reduces sensitivity to insulin in the liver and muscle of male mice |
title_full_unstemmed | Lack of 17β-estradiol reduces sensitivity to insulin in the liver and muscle of male mice |
title_short | Lack of 17β-estradiol reduces sensitivity to insulin in the liver and muscle of male mice |
title_sort | lack of 17β-estradiol reduces sensitivity to insulin in the liver and muscle of male mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6134327/ https://www.ncbi.nlm.nih.gov/pubmed/30211334 http://dx.doi.org/10.1016/j.heliyon.2018.e00772 |
work_keys_str_mv | AT todakatsumi lackof17bestradiolreducessensitivitytoinsulinintheliverandmuscleofmalemice AT todaakiko lackof17bestradiolreducessensitivitytoinsulinintheliverandmuscleofmalemice AT onomasafumi lackof17bestradiolreducessensitivitytoinsulinintheliverandmuscleofmalemice AT saibaratoshiji lackof17bestradiolreducessensitivitytoinsulinintheliverandmuscleofmalemice |