Cargando…
A systematic performance evaluation of clustering methods for single-cell RNA-seq data
Subpopulation identification, usually via some form of unsupervised clustering, is a fundamental step in the analysis of many single-cell RNA-seq data sets. This has motivated the development and application of a broad range of clustering methods, based on various underlying algorithms. Here, we pro...
Autores principales: | Duò, Angelo, Robinson, Mark D., Soneson, Charlotte |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6134335/ https://www.ncbi.nlm.nih.gov/pubmed/30271584 http://dx.doi.org/10.12688/f1000research.15666.3 |
Ejemplares similares
-
A comparison of methods for differential expression analysis of RNA-seq data
por: Soneson, Charlotte, et al.
Publicado: (2013) -
CellMixS: quantifying and visualizing batch effects in single-cell RNA-seq data
por: Lütge, Almut, et al.
Publicado: (2021) -
ARMOR: An Automated Reproducible MOdular Workflow for Preprocessing and Differential Analysis of RNA-seq Data
por: Orjuela, Stephany, et al.
Publicado: (2019) -
Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences
por: Soneson, Charlotte, et al.
Publicado: (2016) -
Alevin-fry unlocks rapid, accurate, and memory-frugal quantification of single-cell RNA-seq data
por: He, Dongze, et al.
Publicado: (2022)