Cargando…

A frog cathelicidin peptide effectively promotes cutaneous wound healing in mice

Although cathelicidins in mammals have been well characterized, little is known about the function of cathelicidin in amphibians. In the present study, a novel 24-residue peptide (cathelicidin-NV, ARGKKECKDDRCRLLMKRGSFSYV) belonging to the cathelicidin family was identified from the skin of the plat...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Jing, Yang, Jun, Wang, Xiaofang, Wei, Lin, Mi, Kai, Shen, Yan, Liu, Tong, Yang, Hailong, Mu, Lixian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6134359/
https://www.ncbi.nlm.nih.gov/pubmed/30045878
http://dx.doi.org/10.1042/BCJ20180286
Descripción
Sumario:Although cathelicidins in mammals have been well characterized, little is known about the function of cathelicidin in amphibians. In the present study, a novel 24-residue peptide (cathelicidin-NV, ARGKKECKDDRCRLLMKRGSFSYV) belonging to the cathelicidin family was identified from the skin of the plateau frog Nanorana ventripunctata. Cathelicidin-NV showed strong wound healing-promoting activity in a murine model with a full-thickness dermal wound. It directly enhanced the proliferation of keratinocyte cells, resulting in accelerated re-epithelialization of the wound site. Cathelicidin-NV also promoted the proliferation of fibroblasts, the differentiation of fibroblasts to myofibroblasts and collagen production in fibroblasts, which are implicated in wound contraction and repair processes. Furthermore, cathelicidin-NV promoted the release of monocyte chemoattractant protein-1, tumor necrosis factor-α, vascular endothelial growth factor and transforming growth factor-β1 in vivo and in vitro, which are essential in the wound-healing processes such as migration, proliferation and differentiation. The MAPK (ERK, JNK and p38) signaling pathways were involved in the wound healing-promoting effect. Additionally, unlike other cathelicidins, cathelicidin-NV did not have any direct effect on microbes and showed no cytotoxicity and hemolytic activity toward mammalian cells at concentrations up to 200 µg/ml. This current study may facilitate the understanding of the cellular and molecular events that underlie quick wound healing in N. ventripunctata. In addition, the combination of these properties makes cathelicidin-NV an excellent candidate for skin wound therapeutics.