Cargando…

Overexpression of MiR-138 Inhibits Cell Growth and Induces Caspase-mediated Apoptosis in Acute Promyelocytic Leukemia Cell Line

Dysregulated expression of miRNAs can play a vital role in pathogenesis of leukemia. The shortened telomere length, and elevated telomerase activity in acute promyelocytic leukemia cells are mainly indicative of extensive proliferative activity. This study aimed to investigate the effect of overexpr...

Descripción completa

Detalles Bibliográficos
Autores principales: Manafi Shabestari, Rima, Alikarami, Fatemeh, Bashash, Davood, Paridar, Mostafa, Safa, Majid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Babol University of Medical Sciences 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6134423/
https://www.ncbi.nlm.nih.gov/pubmed/30234070
http://dx.doi.org/10.22088/IJMCM.BUMS.7.1.24
Descripción
Sumario:Dysregulated expression of miRNAs can play a vital role in pathogenesis of leukemia. The shortened telomere length, and elevated telomerase activity in acute promyelocytic leukemia cells are mainly indicative of extensive proliferative activity. This study aimed to investigate the effect of overexpression of miR-138 on telomerase activity, and cell proliferation of acute promyelocytic leukemia NB4 cells. MiR-138 was overexpressed in NB4 cells using GFP hsa-miR-138-expressing lentiviruses. hTERT mRNA and protein expression levels were assessed by qRT-PCR and western blot analysis. For evaluation of apoptosis, annexin-V staining and activation of caspases were assessed using flow cytometry and western blot analysis, respectively. Our data demonstrate that overexpression of miR-138 attenuated the hTERT mRNA and protein expression levels. In addition, cell growth was inhibited, and malignant cells underwent caspase mediated-apoptosis in response to miR-138 overexpression. These findings suggest that loss of miR-138 expression may be associated with increased telomerase activity in NB4 cells. Therefore, strategies for up-regulation of miR-138 may result in inhibition of malignant cell growth, and provide a promising therapeutic approach for acute promyelocytic leukemia.