Cargando…
Machine learning analysis of microbial flow cytometry data from nanoparticles, antibiotics and carbon sources perturbed anaerobic microbiomes
BACKGROUND: Flow cytometry, with its high throughput nature, combined with the ability to measure an increasing number of cell parameters at once can surpass the throughput of prevalent genomic and metagenomic approaches in the study of microbiomes. Novel computational approaches to analyze flow cyt...
Autores principales: | Dhoble, Abhishek S., Lahiri, Pratik, Bhalerao, Kaustubh D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6134764/ https://www.ncbi.nlm.nih.gov/pubmed/30220912 http://dx.doi.org/10.1186/s13036-018-0112-9 |
Ejemplares similares
-
Evolutionary Stability of Salt Bridges Hints Its Contribution to Stability of Proteins
por: Ban, Xiaofeng, et al.
Publicado: (2019) -
GenePattern flow cytometry suite
por: Spidlen, Josef, et al.
Publicado: (2013) -
Quantification of Plasmodium ex vivo drug susceptibility by flow cytometry
por: Wirjanata, Grennady, et al.
Publicado: (2015) -
Standardization of cytokine flow cytometry assays
por: Maecker, Holden T, et al.
Publicado: (2005) -
Development of a flow-fluorescence in situ hybridization protocol for the analysis of microbial communities in anaerobic fermentation liquor
por: Nettmann, Edith, et al.
Publicado: (2013)