Cargando…
Priority-Lasso: a simple hierarchical approach to the prediction of clinical outcome using multi-omics data
BACKGROUND: The inclusion of high-dimensional omics data in prediction models has become a well-studied topic in the last decades. Although most of these methods do not account for possibly different types of variables in the set of covariates available in the same dataset, there are many such scena...
Autores principales: | Klau, Simon, Jurinovic, Vindi, Hornung, Roman, Herold, Tobias, Boulesteix, Anne-Laure |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6134797/ https://www.ncbi.nlm.nih.gov/pubmed/30208855 http://dx.doi.org/10.1186/s12859-018-2344-6 |
Ejemplares similares
-
Large-scale benchmark study of survival prediction methods using multi-omics data
por: Herrmann, Moritz, et al.
Publicado: (2020) -
IPF-LASSO: Integrative L
(1)-Penalized Regression with Penalty Factors for Prediction Based on Multi-Omics Data
por: Boulesteix, Anne-Laure, et al.
Publicado: (2017) -
Combining location-and-scale batch effect adjustment with data cleaning by latent factor adjustment
por: Hornung, Roman, et al.
Publicado: (2016) -
Added predictive value of omics data: specific issues related to validation illustrated by two case studies
por: Bin, Riccardo De, et al.
Publicado: (2014) -
Block Forests: random forests for blocks of clinical and omics covariate data
por: Hornung, Roman, et al.
Publicado: (2019)