Cargando…
Automated Diabetes Case Identification Using Electronic Health Record Data at a Tertiary Care Facility
OBJECTIVE: To develop and validate a phenotyping algorithm for the identification of patients with type 1 and type 2 diabetes mellitus (DM) preoperatively using routinely available clinical data from electronic health records. PATIENTS AND METHODS: We used first-order logic rules (if-then-else rules...
Autores principales: | Upadhyaya, Sudhi G., Murphree, Dennis H., Ngufor, Che G., Knight, Alison M., Cronk, Daniel J., Cima, Robert R., Curry, Timothy B., Pathak, Jyotishman, Carter, Rickey E., Kor, Daryl J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6135013/ https://www.ncbi.nlm.nih.gov/pubmed/30225406 http://dx.doi.org/10.1016/j.mayocpiqo.2017.04.005 |
Ejemplares similares
-
Effects of Plasma Transfusion on Perioperative Bleeding Complications: A Machine Learning Approach
por: Ngufor, Che, et al.
Publicado: (2015) -
Measuring the impact of ambulatory red blood cell transfusion on home functional status: study protocol for a pilot randomized controlled trial
por: Murphree, Dennis H., et al.
Publicado: (2017) -
The Value of Aggregated High-Resolution Intraoperative Data for Predicting Post-Surgical Infectious Complications at Two Independent Sites
por: Tourani, Roshan, et al.
Publicado: (2019) -
Using Linked Data for Mining Drug-Drug Interactions in Electronic Health Records
por: Pathak, Jyotishman, et al.
Publicado: (2013) -
Bias in Recording of Body Mass Index Data in the Electronic Health Record
por: Rea, Susan, et al.
Publicado: ( 201)