Cargando…
Metabolomics of World Trade Center-Lung Injury: a machine learning approach
INTRODUCTION: Biomarkers of metabolic syndrome expressed soon after World Trade Center (WTC) exposure predict development of WTC Lung Injury (WTC-LI). The metabolome remains an untapped resource with potential to comprehensively characterise many aspects of WTC-LI. This case–control study identified...
Autores principales: | Crowley, George, Kwon, Sophia, Haider, Syed Hissam, Caraher, Erin J, Lam, Rachel, St-Jules, David E, Liu, Mengling, Prezant, David J, Nolan, Anna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6135464/ https://www.ncbi.nlm.nih.gov/pubmed/30233801 http://dx.doi.org/10.1136/bmjresp-2017-000274 |
Ejemplares similares
-
Assessing the Protective Metabolome Using Machine Learning in World Trade Center Particulate Exposed Firefighters at Risk for Lung Injury
por: Crowley, George, et al.
Publicado: (2019) -
Predictive Biomarkers of Gastroesophageal Reflux Disease and Barrett’s Esophagus in World Trade Center Exposed Firefighters: a 15 Year Longitudinal Study
por: Haider, Syed H., et al.
Publicado: (2018) -
Quantitative lung morphology: semi-automated measurement of mean linear intercept
por: Crowley, George, et al.
Publicado: (2019) -
2372: Metabolite and biomarker predictors of WTC-lung injury: An integrated multiplatform pilot analysis
por: Crowley, George, et al.
Publicado: (2018) -
Receptor for advanced glycation end-products and World Trade Center particulate induced lung function loss: A case-cohort study and murine model of acute particulate exposure
por: Caraher, Erin J., et al.
Publicado: (2017)