Cargando…
Machine Learning of Toxicological Big Data Enables Read-Across Structure Activity Relationships (RASAR) Outperforming Animal Test Reproducibility
Earlier we created a chemical hazard database via natural language processing of dossiers submitted to the European Chemical Agency with approximately 10 000 chemicals. We identified repeat OECD guideline tests to establish reproducibility of acute oral and dermal toxicity, eye and skin irritation,...
Autores principales: | Luechtefeld, Thomas, Marsh, Dan, Rowlands, Craig, Hartung, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6135638/ https://www.ncbi.nlm.nih.gov/pubmed/30007363 http://dx.doi.org/10.1093/toxsci/kfy152 |
Ejemplares similares
-
Quark/gluon jet discrimination: a reproducible analysis using R
por: Lowe, Andrew
Publicado: (2017) -
Yandex and ML
por: Ustyuzhanin, Andrey
Publicado: (2017) -
Nvidia and ML
por: Altoe, Piero
Publicado: (2017) -
Intel and ML
por: Pabst, Hans
Publicado: (2017) -
Identification of Hadronically Decaying W Bosons and Top Quarks Using High-Level Features as Input to Boosted Decision Trees and Deep Neural Networks in ATLAS at 13 TeV
por: Akilli, Ece
Publicado: (2017)