Cargando…

Nitrogen and phosphorus stoichiometry of Schima superba under nitrogen deposition

In this study, leaf nitrogen (N) and phosphorus (P) stoichiometry were used as indicators of nitrogen saturation and to assess ecosystem nutrient limitations. Schima superba, a representative and widely distributed dominant evergreen broadleaf tree species of the subtropical forests in southern Chin...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Rui, Pan, Hongwei, He, Biting, Chen, Huanwei, Zhou, Zhichun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6135797/
https://www.ncbi.nlm.nih.gov/pubmed/30209316
http://dx.doi.org/10.1038/s41598-018-32031-y
Descripción
Sumario:In this study, leaf nitrogen (N) and phosphorus (P) stoichiometry were used as indicators of nitrogen saturation and to assess ecosystem nutrient limitations. Schima superba, a representative and widely distributed dominant evergreen broadleaf tree species of the subtropical forests in southern China, was used for this purpose. A nutrient-addition experiment and a field survey were conducted to test the responses of trees from different provenances to N deposition. The relationships between leaf N and P stoichiometry and biomass, nutrient limitation, and soil N:P were analyzed. There was a relationship between leaf N, P, N:P, soil N:P and plant dry biomass. A threshold leaf N:P ratio (16.3) divided the five provenances into different nutrient-limitation classes that were related to the soil N:P ratio or N deposition. The leaf N:P ratio provided an indication of P limitation. A higher soil P level reduced the N deposition effect on plant growth. The leaf N:P ratio of individuals from different provenances can be used as a predictor of nutrient limitation, and this was related to the soil N:P ratio.