Cargando…

The induced by an electromagnetic field coexistence of types I and II spectra in Weyl semimetals

Due to their unique properties, Weyl semimetals (WSMs) are promising materials for the future electronics. Currently, the two types (I and II) of WSMs are discovered experimentally. These types of WSMs differ from each other in their topological properties. In this paper we showed that a coexistence...

Descripción completa

Detalles Bibliográficos
Autor principal: Alisultanov, Zaur Z.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6135849/
https://www.ncbi.nlm.nih.gov/pubmed/30209410
http://dx.doi.org/10.1038/s41598-018-32104-y
Descripción
Sumario:Due to their unique properties, Weyl semimetals (WSMs) are promising materials for the future electronics. Currently, the two types (I and II) of WSMs are discovered experimentally. These types of WSMs differ from each other in their topological properties. In this paper we showed that a coexistence of types I and II Weyls spectra is possible in some WSMs under crossed magnetic and electric fields. This is possible in systems with non-equivalent Weyl points (WPs). In particular, it is possible in strained WSMs. Such phase, controlled by electromagnetic field, is principally new for topological matter physics. It is obvious, that in this regime new features of electron transport will appear. We showed that this effect can also be considered as a mechanism of strain induced type-I-type-II transition.