Cargando…

Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure

We present a study of multiple sclerosis segmentation algorithms conducted at the international MICCAI 2016 challenge. This challenge was operated using a new open-science computing infrastructure. This allowed for the automatic and independent evaluation of a large range of algorithms in a fair and...

Descripción completa

Detalles Bibliográficos
Autores principales: Commowick, Olivier, Istace, Audrey, Kain, Michaël, Laurent, Baptiste, Leray, Florent, Simon, Mathieu, Pop, Sorina Camarasu, Girard, Pascal, Améli, Roxana, Ferré, Jean-Christophe, Kerbrat, Anne, Tourdias, Thomas, Cervenansky, Frédéric, Glatard, Tristan, Beaumont, Jérémy, Doyle, Senan, Forbes, Florence, Knight, Jesse, Khademi, April, Mahbod, Amirreza, Wang, Chunliang, McKinley, Richard, Wagner, Franca, Muschelli, John, Sweeney, Elizabeth, Roura, Eloy, Lladó, Xavier, Santos, Michel M., Santos, Wellington P., Silva-Filho, Abel G., Tomas-Fernandez, Xavier, Urien, Hélène, Bloch, Isabelle, Valverde, Sergi, Cabezas, Mariano, Vera-Olmos, Francisco Javier, Malpica, Norberto, Guttmann, Charles, Vukusic, Sandra, Edan, Gilles, Dojat, Michel, Styner, Martin, Warfield, Simon K., Cotton, François, Barillot, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6135867/
https://www.ncbi.nlm.nih.gov/pubmed/30209345
http://dx.doi.org/10.1038/s41598-018-31911-7
_version_ 1783354892291670016
author Commowick, Olivier
Istace, Audrey
Kain, Michaël
Laurent, Baptiste
Leray, Florent
Simon, Mathieu
Pop, Sorina Camarasu
Girard, Pascal
Améli, Roxana
Ferré, Jean-Christophe
Kerbrat, Anne
Tourdias, Thomas
Cervenansky, Frédéric
Glatard, Tristan
Beaumont, Jérémy
Doyle, Senan
Forbes, Florence
Knight, Jesse
Khademi, April
Mahbod, Amirreza
Wang, Chunliang
McKinley, Richard
Wagner, Franca
Muschelli, John
Sweeney, Elizabeth
Roura, Eloy
Lladó, Xavier
Santos, Michel M.
Santos, Wellington P.
Silva-Filho, Abel G.
Tomas-Fernandez, Xavier
Urien, Hélène
Bloch, Isabelle
Valverde, Sergi
Cabezas, Mariano
Vera-Olmos, Francisco Javier
Malpica, Norberto
Guttmann, Charles
Vukusic, Sandra
Edan, Gilles
Dojat, Michel
Styner, Martin
Warfield, Simon K.
Cotton, François
Barillot, Christian
author_facet Commowick, Olivier
Istace, Audrey
Kain, Michaël
Laurent, Baptiste
Leray, Florent
Simon, Mathieu
Pop, Sorina Camarasu
Girard, Pascal
Améli, Roxana
Ferré, Jean-Christophe
Kerbrat, Anne
Tourdias, Thomas
Cervenansky, Frédéric
Glatard, Tristan
Beaumont, Jérémy
Doyle, Senan
Forbes, Florence
Knight, Jesse
Khademi, April
Mahbod, Amirreza
Wang, Chunliang
McKinley, Richard
Wagner, Franca
Muschelli, John
Sweeney, Elizabeth
Roura, Eloy
Lladó, Xavier
Santos, Michel M.
Santos, Wellington P.
Silva-Filho, Abel G.
Tomas-Fernandez, Xavier
Urien, Hélène
Bloch, Isabelle
Valverde, Sergi
Cabezas, Mariano
Vera-Olmos, Francisco Javier
Malpica, Norberto
Guttmann, Charles
Vukusic, Sandra
Edan, Gilles
Dojat, Michel
Styner, Martin
Warfield, Simon K.
Cotton, François
Barillot, Christian
author_sort Commowick, Olivier
collection PubMed
description We present a study of multiple sclerosis segmentation algorithms conducted at the international MICCAI 2016 challenge. This challenge was operated using a new open-science computing infrastructure. This allowed for the automatic and independent evaluation of a large range of algorithms in a fair and completely automatic manner. This computing infrastructure was used to evaluate thirteen methods of MS lesions segmentation, exploring a broad range of state-of-theart algorithms, against a high-quality database of 53 MS cases coming from four centers following a common definition of the acquisition protocol. Each case was annotated manually by an unprecedented number of seven different experts. Results of the challenge highlighted that automatic algorithms, including the recent machine learning methods (random forests, deep learning, …), are still trailing human expertise on both detection and delineation criteria. In addition, we demonstrate that computing a statistically robust consensus of the algorithms performs closer to human expertise on one score (segmentation) although still trailing on detection scores.
format Online
Article
Text
id pubmed-6135867
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-61358672018-09-15 Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure Commowick, Olivier Istace, Audrey Kain, Michaël Laurent, Baptiste Leray, Florent Simon, Mathieu Pop, Sorina Camarasu Girard, Pascal Améli, Roxana Ferré, Jean-Christophe Kerbrat, Anne Tourdias, Thomas Cervenansky, Frédéric Glatard, Tristan Beaumont, Jérémy Doyle, Senan Forbes, Florence Knight, Jesse Khademi, April Mahbod, Amirreza Wang, Chunliang McKinley, Richard Wagner, Franca Muschelli, John Sweeney, Elizabeth Roura, Eloy Lladó, Xavier Santos, Michel M. Santos, Wellington P. Silva-Filho, Abel G. Tomas-Fernandez, Xavier Urien, Hélène Bloch, Isabelle Valverde, Sergi Cabezas, Mariano Vera-Olmos, Francisco Javier Malpica, Norberto Guttmann, Charles Vukusic, Sandra Edan, Gilles Dojat, Michel Styner, Martin Warfield, Simon K. Cotton, François Barillot, Christian Sci Rep Article We present a study of multiple sclerosis segmentation algorithms conducted at the international MICCAI 2016 challenge. This challenge was operated using a new open-science computing infrastructure. This allowed for the automatic and independent evaluation of a large range of algorithms in a fair and completely automatic manner. This computing infrastructure was used to evaluate thirteen methods of MS lesions segmentation, exploring a broad range of state-of-theart algorithms, against a high-quality database of 53 MS cases coming from four centers following a common definition of the acquisition protocol. Each case was annotated manually by an unprecedented number of seven different experts. Results of the challenge highlighted that automatic algorithms, including the recent machine learning methods (random forests, deep learning, …), are still trailing human expertise on both detection and delineation criteria. In addition, we demonstrate that computing a statistically robust consensus of the algorithms performs closer to human expertise on one score (segmentation) although still trailing on detection scores. Nature Publishing Group UK 2018-09-12 /pmc/articles/PMC6135867/ /pubmed/30209345 http://dx.doi.org/10.1038/s41598-018-31911-7 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Commowick, Olivier
Istace, Audrey
Kain, Michaël
Laurent, Baptiste
Leray, Florent
Simon, Mathieu
Pop, Sorina Camarasu
Girard, Pascal
Améli, Roxana
Ferré, Jean-Christophe
Kerbrat, Anne
Tourdias, Thomas
Cervenansky, Frédéric
Glatard, Tristan
Beaumont, Jérémy
Doyle, Senan
Forbes, Florence
Knight, Jesse
Khademi, April
Mahbod, Amirreza
Wang, Chunliang
McKinley, Richard
Wagner, Franca
Muschelli, John
Sweeney, Elizabeth
Roura, Eloy
Lladó, Xavier
Santos, Michel M.
Santos, Wellington P.
Silva-Filho, Abel G.
Tomas-Fernandez, Xavier
Urien, Hélène
Bloch, Isabelle
Valverde, Sergi
Cabezas, Mariano
Vera-Olmos, Francisco Javier
Malpica, Norberto
Guttmann, Charles
Vukusic, Sandra
Edan, Gilles
Dojat, Michel
Styner, Martin
Warfield, Simon K.
Cotton, François
Barillot, Christian
Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure
title Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure
title_full Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure
title_fullStr Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure
title_full_unstemmed Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure
title_short Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure
title_sort objective evaluation of multiple sclerosis lesion segmentation using a data management and processing infrastructure
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6135867/
https://www.ncbi.nlm.nih.gov/pubmed/30209345
http://dx.doi.org/10.1038/s41598-018-31911-7
work_keys_str_mv AT commowickolivier objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT istaceaudrey objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT kainmichael objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT laurentbaptiste objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT lerayflorent objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT simonmathieu objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT popsorinacamarasu objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT girardpascal objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT ameliroxana objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT ferrejeanchristophe objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT kerbratanne objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT tourdiasthomas objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT cervenanskyfrederic objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT glatardtristan objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT beaumontjeremy objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT doylesenan objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT forbesflorence objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT knightjesse objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT khademiapril objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT mahbodamirreza objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT wangchunliang objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT mckinleyrichard objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT wagnerfranca objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT muschellijohn objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT sweeneyelizabeth objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT rouraeloy objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT lladoxavier objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT santosmichelm objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT santoswellingtonp objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT silvafilhoabelg objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT tomasfernandezxavier objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT urienhelene objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT blochisabelle objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT valverdesergi objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT cabezasmariano objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT veraolmosfranciscojavier objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT malpicanorberto objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT guttmanncharles objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT vukusicsandra objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT edangilles objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT dojatmichel objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT stynermartin objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT warfieldsimonk objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT cottonfrancois objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure
AT barillotchristian objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure