Cargando…
Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure
We present a study of multiple sclerosis segmentation algorithms conducted at the international MICCAI 2016 challenge. This challenge was operated using a new open-science computing infrastructure. This allowed for the automatic and independent evaluation of a large range of algorithms in a fair and...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6135867/ https://www.ncbi.nlm.nih.gov/pubmed/30209345 http://dx.doi.org/10.1038/s41598-018-31911-7 |
_version_ | 1783354892291670016 |
---|---|
author | Commowick, Olivier Istace, Audrey Kain, Michaël Laurent, Baptiste Leray, Florent Simon, Mathieu Pop, Sorina Camarasu Girard, Pascal Améli, Roxana Ferré, Jean-Christophe Kerbrat, Anne Tourdias, Thomas Cervenansky, Frédéric Glatard, Tristan Beaumont, Jérémy Doyle, Senan Forbes, Florence Knight, Jesse Khademi, April Mahbod, Amirreza Wang, Chunliang McKinley, Richard Wagner, Franca Muschelli, John Sweeney, Elizabeth Roura, Eloy Lladó, Xavier Santos, Michel M. Santos, Wellington P. Silva-Filho, Abel G. Tomas-Fernandez, Xavier Urien, Hélène Bloch, Isabelle Valverde, Sergi Cabezas, Mariano Vera-Olmos, Francisco Javier Malpica, Norberto Guttmann, Charles Vukusic, Sandra Edan, Gilles Dojat, Michel Styner, Martin Warfield, Simon K. Cotton, François Barillot, Christian |
author_facet | Commowick, Olivier Istace, Audrey Kain, Michaël Laurent, Baptiste Leray, Florent Simon, Mathieu Pop, Sorina Camarasu Girard, Pascal Améli, Roxana Ferré, Jean-Christophe Kerbrat, Anne Tourdias, Thomas Cervenansky, Frédéric Glatard, Tristan Beaumont, Jérémy Doyle, Senan Forbes, Florence Knight, Jesse Khademi, April Mahbod, Amirreza Wang, Chunliang McKinley, Richard Wagner, Franca Muschelli, John Sweeney, Elizabeth Roura, Eloy Lladó, Xavier Santos, Michel M. Santos, Wellington P. Silva-Filho, Abel G. Tomas-Fernandez, Xavier Urien, Hélène Bloch, Isabelle Valverde, Sergi Cabezas, Mariano Vera-Olmos, Francisco Javier Malpica, Norberto Guttmann, Charles Vukusic, Sandra Edan, Gilles Dojat, Michel Styner, Martin Warfield, Simon K. Cotton, François Barillot, Christian |
author_sort | Commowick, Olivier |
collection | PubMed |
description | We present a study of multiple sclerosis segmentation algorithms conducted at the international MICCAI 2016 challenge. This challenge was operated using a new open-science computing infrastructure. This allowed for the automatic and independent evaluation of a large range of algorithms in a fair and completely automatic manner. This computing infrastructure was used to evaluate thirteen methods of MS lesions segmentation, exploring a broad range of state-of-theart algorithms, against a high-quality database of 53 MS cases coming from four centers following a common definition of the acquisition protocol. Each case was annotated manually by an unprecedented number of seven different experts. Results of the challenge highlighted that automatic algorithms, including the recent machine learning methods (random forests, deep learning, …), are still trailing human expertise on both detection and delineation criteria. In addition, we demonstrate that computing a statistically robust consensus of the algorithms performs closer to human expertise on one score (segmentation) although still trailing on detection scores. |
format | Online Article Text |
id | pubmed-6135867 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-61358672018-09-15 Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure Commowick, Olivier Istace, Audrey Kain, Michaël Laurent, Baptiste Leray, Florent Simon, Mathieu Pop, Sorina Camarasu Girard, Pascal Améli, Roxana Ferré, Jean-Christophe Kerbrat, Anne Tourdias, Thomas Cervenansky, Frédéric Glatard, Tristan Beaumont, Jérémy Doyle, Senan Forbes, Florence Knight, Jesse Khademi, April Mahbod, Amirreza Wang, Chunliang McKinley, Richard Wagner, Franca Muschelli, John Sweeney, Elizabeth Roura, Eloy Lladó, Xavier Santos, Michel M. Santos, Wellington P. Silva-Filho, Abel G. Tomas-Fernandez, Xavier Urien, Hélène Bloch, Isabelle Valverde, Sergi Cabezas, Mariano Vera-Olmos, Francisco Javier Malpica, Norberto Guttmann, Charles Vukusic, Sandra Edan, Gilles Dojat, Michel Styner, Martin Warfield, Simon K. Cotton, François Barillot, Christian Sci Rep Article We present a study of multiple sclerosis segmentation algorithms conducted at the international MICCAI 2016 challenge. This challenge was operated using a new open-science computing infrastructure. This allowed for the automatic and independent evaluation of a large range of algorithms in a fair and completely automatic manner. This computing infrastructure was used to evaluate thirteen methods of MS lesions segmentation, exploring a broad range of state-of-theart algorithms, against a high-quality database of 53 MS cases coming from four centers following a common definition of the acquisition protocol. Each case was annotated manually by an unprecedented number of seven different experts. Results of the challenge highlighted that automatic algorithms, including the recent machine learning methods (random forests, deep learning, …), are still trailing human expertise on both detection and delineation criteria. In addition, we demonstrate that computing a statistically robust consensus of the algorithms performs closer to human expertise on one score (segmentation) although still trailing on detection scores. Nature Publishing Group UK 2018-09-12 /pmc/articles/PMC6135867/ /pubmed/30209345 http://dx.doi.org/10.1038/s41598-018-31911-7 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Commowick, Olivier Istace, Audrey Kain, Michaël Laurent, Baptiste Leray, Florent Simon, Mathieu Pop, Sorina Camarasu Girard, Pascal Améli, Roxana Ferré, Jean-Christophe Kerbrat, Anne Tourdias, Thomas Cervenansky, Frédéric Glatard, Tristan Beaumont, Jérémy Doyle, Senan Forbes, Florence Knight, Jesse Khademi, April Mahbod, Amirreza Wang, Chunliang McKinley, Richard Wagner, Franca Muschelli, John Sweeney, Elizabeth Roura, Eloy Lladó, Xavier Santos, Michel M. Santos, Wellington P. Silva-Filho, Abel G. Tomas-Fernandez, Xavier Urien, Hélène Bloch, Isabelle Valverde, Sergi Cabezas, Mariano Vera-Olmos, Francisco Javier Malpica, Norberto Guttmann, Charles Vukusic, Sandra Edan, Gilles Dojat, Michel Styner, Martin Warfield, Simon K. Cotton, François Barillot, Christian Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure |
title | Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure |
title_full | Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure |
title_fullStr | Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure |
title_full_unstemmed | Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure |
title_short | Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure |
title_sort | objective evaluation of multiple sclerosis lesion segmentation using a data management and processing infrastructure |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6135867/ https://www.ncbi.nlm.nih.gov/pubmed/30209345 http://dx.doi.org/10.1038/s41598-018-31911-7 |
work_keys_str_mv | AT commowickolivier objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT istaceaudrey objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT kainmichael objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT laurentbaptiste objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT lerayflorent objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT simonmathieu objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT popsorinacamarasu objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT girardpascal objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT ameliroxana objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT ferrejeanchristophe objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT kerbratanne objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT tourdiasthomas objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT cervenanskyfrederic objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT glatardtristan objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT beaumontjeremy objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT doylesenan objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT forbesflorence objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT knightjesse objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT khademiapril objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT mahbodamirreza objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT wangchunliang objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT mckinleyrichard objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT wagnerfranca objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT muschellijohn objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT sweeneyelizabeth objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT rouraeloy objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT lladoxavier objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT santosmichelm objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT santoswellingtonp objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT silvafilhoabelg objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT tomasfernandezxavier objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT urienhelene objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT blochisabelle objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT valverdesergi objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT cabezasmariano objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT veraolmosfranciscojavier objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT malpicanorberto objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT guttmanncharles objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT vukusicsandra objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT edangilles objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT dojatmichel objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT stynermartin objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT warfieldsimonk objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT cottonfrancois objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure AT barillotchristian objectiveevaluationofmultiplesclerosislesionsegmentationusingadatamanagementandprocessinginfrastructure |