Cargando…
Automatic Cell Segmentation by Adaptive Thresholding (ACSAT) for Large-Scale Calcium Imaging Datasets
Advances in calcium imaging have made it possible to record from an increasingly larger number of neurons simultaneously. Neuroscientists can now routinely image hundreds to thousands of individual neurons. An emerging technical challenge that parallels the advancement in imaging a large number of i...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6135987/ https://www.ncbi.nlm.nih.gov/pubmed/30221189 http://dx.doi.org/10.1523/ENEURO.0056-18.2018 |
_version_ | 1783354919016726528 |
---|---|
author | Shen, Simon P. Tseng, Hua-an Hansen, Kyle R. Wu, Ruofan Gritton, Howard J. Si, Jennie Han, Xue |
author_facet | Shen, Simon P. Tseng, Hua-an Hansen, Kyle R. Wu, Ruofan Gritton, Howard J. Si, Jennie Han, Xue |
author_sort | Shen, Simon P. |
collection | PubMed |
description | Advances in calcium imaging have made it possible to record from an increasingly larger number of neurons simultaneously. Neuroscientists can now routinely image hundreds to thousands of individual neurons. An emerging technical challenge that parallels the advancement in imaging a large number of individual neurons is the processing of correspondingly large datasets. One important step is the identification of individual neurons. Traditional methods rely mainly on manual or semimanual inspection, which cannot be scaled for processing large datasets. To address this challenge, we focused on developing an automated segmentation method, which we refer to as automated cell segmentation by adaptive thresholding (ACSAT). ACSAT works with a time-collapsed image and includes an iterative procedure that automatically calculates global and local threshold values during successive iterations based on the distribution of image pixel intensities. Thus, the algorithm is capable of handling variations in morphological details and in fluorescence intensities in different calcium imaging datasets. In this paper, we demonstrate the utility of ACSAT by testing it on 500 simulated datasets, two wide-field hippocampus datasets, a wide-field striatum dataset, a wide-field cell culture dataset, and a two-photon hippocampus dataset. For the simulated datasets with truth, ACSAT achieved >80% recall and precision when the signal-to-noise ratio was no less than ∼24 dB. |
format | Online Article Text |
id | pubmed-6135987 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Society for Neuroscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-61359872018-09-14 Automatic Cell Segmentation by Adaptive Thresholding (ACSAT) for Large-Scale Calcium Imaging Datasets Shen, Simon P. Tseng, Hua-an Hansen, Kyle R. Wu, Ruofan Gritton, Howard J. Si, Jennie Han, Xue eNeuro Methods/New Tools Advances in calcium imaging have made it possible to record from an increasingly larger number of neurons simultaneously. Neuroscientists can now routinely image hundreds to thousands of individual neurons. An emerging technical challenge that parallels the advancement in imaging a large number of individual neurons is the processing of correspondingly large datasets. One important step is the identification of individual neurons. Traditional methods rely mainly on manual or semimanual inspection, which cannot be scaled for processing large datasets. To address this challenge, we focused on developing an automated segmentation method, which we refer to as automated cell segmentation by adaptive thresholding (ACSAT). ACSAT works with a time-collapsed image and includes an iterative procedure that automatically calculates global and local threshold values during successive iterations based on the distribution of image pixel intensities. Thus, the algorithm is capable of handling variations in morphological details and in fluorescence intensities in different calcium imaging datasets. In this paper, we demonstrate the utility of ACSAT by testing it on 500 simulated datasets, two wide-field hippocampus datasets, a wide-field striatum dataset, a wide-field cell culture dataset, and a two-photon hippocampus dataset. For the simulated datasets with truth, ACSAT achieved >80% recall and precision when the signal-to-noise ratio was no less than ∼24 dB. Society for Neuroscience 2018-09-13 /pmc/articles/PMC6135987/ /pubmed/30221189 http://dx.doi.org/10.1523/ENEURO.0056-18.2018 Text en Copyright © 2018 Shen et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Methods/New Tools Shen, Simon P. Tseng, Hua-an Hansen, Kyle R. Wu, Ruofan Gritton, Howard J. Si, Jennie Han, Xue Automatic Cell Segmentation by Adaptive Thresholding (ACSAT) for Large-Scale Calcium Imaging Datasets |
title | Automatic Cell Segmentation by Adaptive Thresholding (ACSAT) for Large-Scale Calcium Imaging Datasets |
title_full | Automatic Cell Segmentation by Adaptive Thresholding (ACSAT) for Large-Scale Calcium Imaging Datasets |
title_fullStr | Automatic Cell Segmentation by Adaptive Thresholding (ACSAT) for Large-Scale Calcium Imaging Datasets |
title_full_unstemmed | Automatic Cell Segmentation by Adaptive Thresholding (ACSAT) for Large-Scale Calcium Imaging Datasets |
title_short | Automatic Cell Segmentation by Adaptive Thresholding (ACSAT) for Large-Scale Calcium Imaging Datasets |
title_sort | automatic cell segmentation by adaptive thresholding (acsat) for large-scale calcium imaging datasets |
topic | Methods/New Tools |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6135987/ https://www.ncbi.nlm.nih.gov/pubmed/30221189 http://dx.doi.org/10.1523/ENEURO.0056-18.2018 |
work_keys_str_mv | AT shensimonp automaticcellsegmentationbyadaptivethresholdingacsatforlargescalecalciumimagingdatasets AT tsenghuaan automaticcellsegmentationbyadaptivethresholdingacsatforlargescalecalciumimagingdatasets AT hansenkyler automaticcellsegmentationbyadaptivethresholdingacsatforlargescalecalciumimagingdatasets AT wuruofan automaticcellsegmentationbyadaptivethresholdingacsatforlargescalecalciumimagingdatasets AT grittonhowardj automaticcellsegmentationbyadaptivethresholdingacsatforlargescalecalciumimagingdatasets AT sijennie automaticcellsegmentationbyadaptivethresholdingacsatforlargescalecalciumimagingdatasets AT hanxue automaticcellsegmentationbyadaptivethresholdingacsatforlargescalecalciumimagingdatasets |