Cargando…
Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana
Drought is one of the most severe abiotic factors restricting plant growth and yield. Numerous genes functioning in drought response are regulated by abscisic acid (ABA) dependent and independent pathways, but knowledge of interplay between the two pathways is still limited. Here, we integrated tran...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Sociedade Brasileira de Genética
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6136374/ https://www.ncbi.nlm.nih.gov/pubmed/30044467 http://dx.doi.org/10.1590/1678-4685-GMB-2017-0229 |
_version_ | 1783354986879516672 |
---|---|
author | Liu, Shiwei Lv, Zongyou Liu, Yihui Li, Ling Zhang, Lida |
author_facet | Liu, Shiwei Lv, Zongyou Liu, Yihui Li, Ling Zhang, Lida |
author_sort | Liu, Shiwei |
collection | PubMed |
description | Drought is one of the most severe abiotic factors restricting plant growth and yield. Numerous genes functioning in drought response are regulated by abscisic acid (ABA) dependent and independent pathways, but knowledge of interplay between the two pathways is still limited. Here, we integrated transcriptome sequencing and network analyses to explore interplays between ABA-dependent and ABA-independent pathways responding to drought stress in Arabidopsis thaliana. We identified 211 ABA-dependent differentially expressed genes (DEGs) and 1,118 ABA-independent DEGs under drought stress. Functional analysis showed that ABA-dependent DEGs were significantly enriched in expected biological processes in response to water deprivation and ABA stimulus, while ABA-independent DEGs were preferentially enriched in response to jasmonic acid (JA), salicylic acid (SA) and gibberellin (GA) stimuli. We found significantly enriched interactions between ABA-dependent and ABA-independent pathways with 94 genes acting as core interacting components by combining network analyses. A link between ABA and JA signaling mediated through a direct interaction of the ABA responsive elements-binding factor ABF3 with the basic helix-loop-helix transcription factor MYC2 was validated by yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays. Our study provides a systematic view of the interplay between ABA-dependent and ABA-independent pathways in response to drought stress. |
format | Online Article Text |
id | pubmed-6136374 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Sociedade Brasileira de Genética |
record_format | MEDLINE/PubMed |
spelling | pubmed-61363742018-09-26 Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana Liu, Shiwei Lv, Zongyou Liu, Yihui Li, Ling Zhang, Lida Genet Mol Biol Plant Genetics Drought is one of the most severe abiotic factors restricting plant growth and yield. Numerous genes functioning in drought response are regulated by abscisic acid (ABA) dependent and independent pathways, but knowledge of interplay between the two pathways is still limited. Here, we integrated transcriptome sequencing and network analyses to explore interplays between ABA-dependent and ABA-independent pathways responding to drought stress in Arabidopsis thaliana. We identified 211 ABA-dependent differentially expressed genes (DEGs) and 1,118 ABA-independent DEGs under drought stress. Functional analysis showed that ABA-dependent DEGs were significantly enriched in expected biological processes in response to water deprivation and ABA stimulus, while ABA-independent DEGs were preferentially enriched in response to jasmonic acid (JA), salicylic acid (SA) and gibberellin (GA) stimuli. We found significantly enriched interactions between ABA-dependent and ABA-independent pathways with 94 genes acting as core interacting components by combining network analyses. A link between ABA and JA signaling mediated through a direct interaction of the ABA responsive elements-binding factor ABF3 with the basic helix-loop-helix transcription factor MYC2 was validated by yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays. Our study provides a systematic view of the interplay between ABA-dependent and ABA-independent pathways in response to drought stress. Sociedade Brasileira de Genética 2018-07-23 2018 /pmc/articles/PMC6136374/ /pubmed/30044467 http://dx.doi.org/10.1590/1678-4685-GMB-2017-0229 Text en Copyright © 2018, Sociedade Brasileira de Genética. https://creativecommons.org/licenses/by/4.0/ License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License (type CC-BY), which permits unrestricted use, distribution and reproduction in any medium, provided the original article is properly cited. |
spellingShingle | Plant Genetics Liu, Shiwei Lv, Zongyou Liu, Yihui Li, Ling Zhang, Lida Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana |
title | Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana
|
title_full | Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana
|
title_fullStr | Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana
|
title_full_unstemmed | Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana
|
title_short | Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana
|
title_sort | network analysis of aba-dependent and aba-independent drought responsive genes in arabidopsis thaliana |
topic | Plant Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6136374/ https://www.ncbi.nlm.nih.gov/pubmed/30044467 http://dx.doi.org/10.1590/1678-4685-GMB-2017-0229 |
work_keys_str_mv | AT liushiwei networkanalysisofabadependentandabaindependentdroughtresponsivegenesinarabidopsisthaliana AT lvzongyou networkanalysisofabadependentandabaindependentdroughtresponsivegenesinarabidopsisthaliana AT liuyihui networkanalysisofabadependentandabaindependentdroughtresponsivegenesinarabidopsisthaliana AT liling networkanalysisofabadependentandabaindependentdroughtresponsivegenesinarabidopsisthaliana AT zhanglida networkanalysisofabadependentandabaindependentdroughtresponsivegenesinarabidopsisthaliana |