Cargando…
An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data
The application of gene expression data to the diagnosis and classification of cancer has become a hot issue in the field of cancer classification. Gene expression data usually contains a large number of tumor-free data and has the characteristics of high dimensions. In order to select determinant g...
Autores principales: | Zhang, Ying, Deng, Qingchun, Liang, Wenbin, Zou, Xianchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6136508/ https://www.ncbi.nlm.nih.gov/pubmed/30228989 http://dx.doi.org/10.1155/2018/7538204 |
Ejemplares similares
-
A Multimodal Affinity Fusion Network for Predicting the Survival of Breast Cancer Patients
por: Guo, Weizhou, et al.
Publicado: (2021) -
Support Vector Machines
por: Deng, Naiyang
Publicado: (2012) -
Deep Features for Training Support Vector Machines
por: Nanni, Loris, et al.
Publicado: (2021) -
BLProt: prediction of bioluminescent proteins based on support vector machine and relieff feature selection
por: Kandaswamy, Krishna Kumar, et al.
Publicado: (2011) -
Prediction of Human Intestinal Absorption by GA Feature Selection and Support Vector Machine Regression
por: Yan, Aixia, et al.
Publicado: (2008)