Cargando…
A Bayesian framework for efficient and accurate variant prediction
There is a growing need to develop variant prediction tools capable of assessing a wide spectrum of evidence. We present a Bayesian framework that involves aggregating pathogenicity data across multiple in silico scores on a gene-by-gene basis and multiple evidence statistics in both quantitative an...
Autores principales: | Qian, Dajun, Li, Shuwei, Tian, Yuan, Clifford, Jacob W., Sarver, Brice A. J., Pesaran, Tina, Gau, Chia-Ling, Elliott, Aaron M., Lu, Hsiao-Mei, Black, Mary Helen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6136750/ https://www.ncbi.nlm.nih.gov/pubmed/30212499 http://dx.doi.org/10.1371/journal.pone.0203553 |
Ejemplares similares
-
REVEL and BayesDel outperform other in silico meta-predictors for clinical variant classification
por: Tian, Yuan, et al.
Publicado: (2019) -
Somatic TP53 variants frequently confound germline testing results
por: Weitzel, Jeffrey N., et al.
Publicado: (2017) -
ARA: accurate, reliable and active histopathological image classification framework with Bayesian deep learning
por: Rączkowska, Alicja, et al.
Publicado: (2019) -
Prevalence of Germline Pathogenic and Likely Pathogenic Variants in Patients With Second Breast Cancers
por: Yao K, Katharine A, et al.
Publicado: (2020) -
A Bayesian Network Driven Approach to Model the Transcriptional Response to Nitric Oxide in Saccharomyces cerevisiae
por: Zhu, Jingchun, et al.
Publicado: (2006)