Cargando…
Real-time, simultaneous myoelectric control using a convolutional neural network
The evolution of deep learning techniques has been transformative as they have allowed complex mappings to be trained between control inputs and outputs without the need for feature engineering. In this work, a myoelectric control system based on convolutional neural networks (CNN) is proposed as a...
Autores principales: | Ameri, Ali, Akhaee, Mohammad Ali, Scheme, Erik, Englehart, Kevin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6136764/ https://www.ncbi.nlm.nih.gov/pubmed/30212573 http://dx.doi.org/10.1371/journal.pone.0203835 |
Ejemplares similares
-
Deep Cross-User Models Reduce the Training Burden in Myoelectric Control
por: Campbell, Evan, et al.
Publicado: (2021) -
Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors
por: Phinyomark, Angkoon, et al.
Publicado: (2018) -
Current Trends and Confounding Factors in Myoelectric Control: Limb Position and Contraction Intensity
por: Campbell, Evan, et al.
Publicado: (2020) -
Audible Feedback Improves Internal Model Strength and Performance of Myoelectric Prosthesis Control
por: Shehata, Ahmed W., et al.
Publicado: (2018) -
Interpreting Deep Learning Features for Myoelectric Control: A Comparison With Handcrafted Features
por: Côté-Allard, Ulysse, et al.
Publicado: (2020)