Cargando…

Study on the aggregation behavior of kaolinite particles in the presence of cationic, anionic and non-ionic surfactants

Aggregation behaviors of kaolinite particles with different surfactants were studied in this paper. Aggregation settling yield and fractal dimension analysis were used to determine the aggregation results. Zeta potential measurements, adsorption tests, Infrared spectroscopy analysis and scanning ele...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Lingyun, Shen, Liang, Li, Weirong, Min, Fanfei, Lu, Fangqin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6136786/
https://www.ncbi.nlm.nih.gov/pubmed/30212536
http://dx.doi.org/10.1371/journal.pone.0204037
Descripción
Sumario:Aggregation behaviors of kaolinite particles with different surfactants were studied in this paper. Aggregation settling yield and fractal dimension analysis were used to determine the aggregation results. Zeta potential measurements, adsorption tests, Infrared spectroscopy analysis and scanning electron microscope measurements were conducted for further investigation into the mechanism. Experimental results showed that much better aggregation results was obtained in the presence of cationic surfactant than that in the presence of anionic and non-ionic surfactants. 98% aggregation setting yield was obtained in the presence of dodecylamine. Adsorption tests indicated that the adsorption capacity of dodecylamine on kaolinite surface was larger than that of sodium oleate and Tween80. Zeta potential measurements confirmed that dodecylamine was more beneficial to the aggregation of kaolinite particles. Infrared spectroscopy analysis revealed that the adsorption of dodecylamine on kaolinite surface was attributed to electrostatic and hydrogen-bonding interactions. Sodium oleate was adsorbed by chemical adsorption. However, Tween80 can hardly be adsorbed by kaolinite surface.