Cargando…
G2Vec: Distributed gene representations for identification of cancer prognostic genes
Identification of cancer prognostic genes is important in that it can lead to accurate outcome prediction and better therapeutic trials for cancer patients. Many computational approaches have been proposed to achieve this goal; however, there is room for improvement. Recent developments in deep lear...
Autores principales: | Choi, Jonghwan, Oh, Ilhwan, Seo, Sangmin, Ahn, Jaegyoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137174/ https://www.ncbi.nlm.nih.gov/pubmed/30213980 http://dx.doi.org/10.1038/s41598-018-32180-0 |
Ejemplares similares
-
GVES: machine learning model for identification of prognostic genes with a small dataset
por: Ko, Soohyun, et al.
Publicado: (2021) -
Gene2vec: distributed representation of genes based on co-expression
por: Du, Jingcheng, et al.
Publicado: (2019) -
Binding affinity prediction for protein–ligand complex using deep attention mechanism based on intermolecular interactions
por: Seo, Sangmin, et al.
Publicado: (2021) -
Mut2Vec: distributed representation of cancerous mutations
por: Kim, Sunkyu, et al.
Publicado: (2018) -
HiG2Vec: hierarchical representations of Gene Ontology and genes in the Poincaré ball
por: Kim, Jaesik, et al.
Publicado: (2021)