Cargando…
Toward a Low-Cost Alkaline Zinc-Iron Flow Battery with a Polybenzimidazole Custom Membrane for Stationary Energy Storage
Alkaline zinc-iron flow battery is a promising technology for electrochemical energy storage. In this study, we present a high-performance alkaline zinc-iron flow battery in combination with a self-made, low-cost membrane with high mechanical stability and a 3D porous carbon felt electrode. The memb...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137286/ https://www.ncbi.nlm.nih.gov/pubmed/30428329 http://dx.doi.org/10.1016/j.isci.2018.04.006 |
_version_ | 1783355158185377792 |
---|---|
author | Yuan, Zhizhang Duan, Yinqi Liu, Tao Zhang, Huamin Li, Xianfeng |
author_facet | Yuan, Zhizhang Duan, Yinqi Liu, Tao Zhang, Huamin Li, Xianfeng |
author_sort | Yuan, Zhizhang |
collection | PubMed |
description | Alkaline zinc-iron flow battery is a promising technology for electrochemical energy storage. In this study, we present a high-performance alkaline zinc-iron flow battery in combination with a self-made, low-cost membrane with high mechanical stability and a 3D porous carbon felt electrode. The membrane could provide high hydroxyl ion conductivity while resisting zinc dendrites well owing to its high mechanical stability. The 3D porous carbon felt could serve as a guidance for the zinc stripping/plating, which can effectively suppress zinc dendrite/accumulation as well. Thus this battery demonstrates a coulombic efficiency of 99.5% and an energy efficiency of 82.8% at 160 mA cm(−2), which is the highest value among recently reported flow battery systems. The battery can stably run for more than 500 cycles, showing very good stability. Most importantly, the practicability of this battery is confirmed by assembling a kilowatt cell stack with capital cost under $90/kWh. |
format | Online Article Text |
id | pubmed-6137286 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-61372862018-09-17 Toward a Low-Cost Alkaline Zinc-Iron Flow Battery with a Polybenzimidazole Custom Membrane for Stationary Energy Storage Yuan, Zhizhang Duan, Yinqi Liu, Tao Zhang, Huamin Li, Xianfeng iScience Article Alkaline zinc-iron flow battery is a promising technology for electrochemical energy storage. In this study, we present a high-performance alkaline zinc-iron flow battery in combination with a self-made, low-cost membrane with high mechanical stability and a 3D porous carbon felt electrode. The membrane could provide high hydroxyl ion conductivity while resisting zinc dendrites well owing to its high mechanical stability. The 3D porous carbon felt could serve as a guidance for the zinc stripping/plating, which can effectively suppress zinc dendrite/accumulation as well. Thus this battery demonstrates a coulombic efficiency of 99.5% and an energy efficiency of 82.8% at 160 mA cm(−2), which is the highest value among recently reported flow battery systems. The battery can stably run for more than 500 cycles, showing very good stability. Most importantly, the practicability of this battery is confirmed by assembling a kilowatt cell stack with capital cost under $90/kWh. Elsevier 2018-04-12 /pmc/articles/PMC6137286/ /pubmed/30428329 http://dx.doi.org/10.1016/j.isci.2018.04.006 Text en © 2018 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Yuan, Zhizhang Duan, Yinqi Liu, Tao Zhang, Huamin Li, Xianfeng Toward a Low-Cost Alkaline Zinc-Iron Flow Battery with a Polybenzimidazole Custom Membrane for Stationary Energy Storage |
title | Toward a Low-Cost Alkaline Zinc-Iron Flow Battery with a Polybenzimidazole Custom Membrane for Stationary Energy Storage |
title_full | Toward a Low-Cost Alkaline Zinc-Iron Flow Battery with a Polybenzimidazole Custom Membrane for Stationary Energy Storage |
title_fullStr | Toward a Low-Cost Alkaline Zinc-Iron Flow Battery with a Polybenzimidazole Custom Membrane for Stationary Energy Storage |
title_full_unstemmed | Toward a Low-Cost Alkaline Zinc-Iron Flow Battery with a Polybenzimidazole Custom Membrane for Stationary Energy Storage |
title_short | Toward a Low-Cost Alkaline Zinc-Iron Flow Battery with a Polybenzimidazole Custom Membrane for Stationary Energy Storage |
title_sort | toward a low-cost alkaline zinc-iron flow battery with a polybenzimidazole custom membrane for stationary energy storage |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137286/ https://www.ncbi.nlm.nih.gov/pubmed/30428329 http://dx.doi.org/10.1016/j.isci.2018.04.006 |
work_keys_str_mv | AT yuanzhizhang towardalowcostalkalinezincironflowbatterywithapolybenzimidazolecustommembraneforstationaryenergystorage AT duanyinqi towardalowcostalkalinezincironflowbatterywithapolybenzimidazolecustommembraneforstationaryenergystorage AT liutao towardalowcostalkalinezincironflowbatterywithapolybenzimidazolecustommembraneforstationaryenergystorage AT zhanghuamin towardalowcostalkalinezincironflowbatterywithapolybenzimidazolecustommembraneforstationaryenergystorage AT lixianfeng towardalowcostalkalinezincironflowbatterywithapolybenzimidazolecustommembraneforstationaryenergystorage |