Cargando…
Machine learning meets volcano plots: computational discovery of cross-coupling catalysts
The application of modern machine learning to challenges in atomistic simulation is gaining attraction. We present new machine learning models that can predict the energy of the oxidative addition process between a transition metal complex and a substrate for C–C cross-coupling reactions. In turn, t...
Autores principales: | Meyer, Benjamin, Sawatlon, Boodsarin, Heinen, Stefan, von Lilienfeld, O. Anatole, Corminboeuf, Clémence |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137445/ https://www.ncbi.nlm.nih.gov/pubmed/30310627 http://dx.doi.org/10.1039/c8sc01949e |
Ejemplares similares
-
Accessing and predicting the kinetic profiles of homogeneous catalysts from volcano plots
por: Wodrich, Matthew D., et al.
Publicado: (2016) -
Data-powered augmented volcano plots for homogeneous catalysis
por: Wodrich, Matthew D., et al.
Publicado: (2020) -
Linear scaling relationships and volcano plots in homogeneous catalysis – revisiting the Suzuki reaction
por: Busch, Michael, et al.
Publicado: (2015) -
Uncovering the Activity of Alkaline Earth Metal Hydrogenation Catalysis Through Molecular Volcano Plots
por: Das, Shubhajit, et al.
Publicado: (2021) -
Inflated false discovery rate due to volcano plots: problem and solutions
por: Ebrahimpoor, Mitra, et al.
Publicado: (2021)