Cargando…

Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers

Cellulose, a major constituent of our natural environment and a structured biodegradable biopolymer, has been shown to exhibit shear piezoelectricity with potential applications in energy harvesters, biomedical sensors, electro-active displays and actuators. In this regard, a high-aspect ratio nanof...

Descripción completa

Detalles Bibliográficos
Autores principales: Calahorra, Yonatan, Datta, Anuja, Famelton, James, Kam, Doron, Shoseyov, Oded, Kar-Narayan, Sohini
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137605/
https://www.ncbi.nlm.nih.gov/pubmed/30160284
http://dx.doi.org/10.1039/c8nr04967j
_version_ 1783355203179773952
author Calahorra, Yonatan
Datta, Anuja
Famelton, James
Kam, Doron
Shoseyov, Oded
Kar-Narayan, Sohini
author_facet Calahorra, Yonatan
Datta, Anuja
Famelton, James
Kam, Doron
Shoseyov, Oded
Kar-Narayan, Sohini
author_sort Calahorra, Yonatan
collection PubMed
description Cellulose, a major constituent of our natural environment and a structured biodegradable biopolymer, has been shown to exhibit shear piezoelectricity with potential applications in energy harvesters, biomedical sensors, electro-active displays and actuators. In this regard, a high-aspect ratio nanofiber geometry is particularly attractive as flexing or bending will likely produce a larger piezoelectric response as compared to axial deformation in this material. Here we report self-assembled cellulose nanofibers (SA-CNFs) fabricated using a template-wetting process, whereby parent cellulose nanocrystals (CNCs) introduced into a nanoporous template assemble to form rod-like cellulose clusters, which then assemble into SA-CNFs. Annealed SA-CNFs were found to exhibit an anisotropic shear piezoelectric response as directly measured using non-destructive piezo-response force microscopy (ND-PFM). We interpret these results in light of the distinct hierarchical structure in our template-grown SA-CNFs as revealed by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (TEM).
format Online
Article
Text
id pubmed-6137605
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-61376052018-10-11 Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers Calahorra, Yonatan Datta, Anuja Famelton, James Kam, Doron Shoseyov, Oded Kar-Narayan, Sohini Nanoscale Chemistry Cellulose, a major constituent of our natural environment and a structured biodegradable biopolymer, has been shown to exhibit shear piezoelectricity with potential applications in energy harvesters, biomedical sensors, electro-active displays and actuators. In this regard, a high-aspect ratio nanofiber geometry is particularly attractive as flexing or bending will likely produce a larger piezoelectric response as compared to axial deformation in this material. Here we report self-assembled cellulose nanofibers (SA-CNFs) fabricated using a template-wetting process, whereby parent cellulose nanocrystals (CNCs) introduced into a nanoporous template assemble to form rod-like cellulose clusters, which then assemble into SA-CNFs. Annealed SA-CNFs were found to exhibit an anisotropic shear piezoelectric response as directly measured using non-destructive piezo-response force microscopy (ND-PFM). We interpret these results in light of the distinct hierarchical structure in our template-grown SA-CNFs as revealed by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (TEM). Royal Society of Chemistry 2018-09-21 2018-08-30 /pmc/articles/PMC6137605/ /pubmed/30160284 http://dx.doi.org/10.1039/c8nr04967j Text en This journal is © The Royal Society of Chemistry 2018 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0)
spellingShingle Chemistry
Calahorra, Yonatan
Datta, Anuja
Famelton, James
Kam, Doron
Shoseyov, Oded
Kar-Narayan, Sohini
Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers
title Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers
title_full Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers
title_fullStr Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers
title_full_unstemmed Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers
title_short Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers
title_sort nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137605/
https://www.ncbi.nlm.nih.gov/pubmed/30160284
http://dx.doi.org/10.1039/c8nr04967j
work_keys_str_mv AT calahorrayonatan nanoscaleelectromechanicalpropertiesoftemplateassistedhierarchicalselfassembledcellulosenanofibers
AT dattaanuja nanoscaleelectromechanicalpropertiesoftemplateassistedhierarchicalselfassembledcellulosenanofibers
AT fameltonjames nanoscaleelectromechanicalpropertiesoftemplateassistedhierarchicalselfassembledcellulosenanofibers
AT kamdoron nanoscaleelectromechanicalpropertiesoftemplateassistedhierarchicalselfassembledcellulosenanofibers
AT shoseyovoded nanoscaleelectromechanicalpropertiesoftemplateassistedhierarchicalselfassembledcellulosenanofibers
AT karnarayansohini nanoscaleelectromechanicalpropertiesoftemplateassistedhierarchicalselfassembledcellulosenanofibers