Cargando…
Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers
Cellulose, a major constituent of our natural environment and a structured biodegradable biopolymer, has been shown to exhibit shear piezoelectricity with potential applications in energy harvesters, biomedical sensors, electro-active displays and actuators. In this regard, a high-aspect ratio nanof...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137605/ https://www.ncbi.nlm.nih.gov/pubmed/30160284 http://dx.doi.org/10.1039/c8nr04967j |
_version_ | 1783355203179773952 |
---|---|
author | Calahorra, Yonatan Datta, Anuja Famelton, James Kam, Doron Shoseyov, Oded Kar-Narayan, Sohini |
author_facet | Calahorra, Yonatan Datta, Anuja Famelton, James Kam, Doron Shoseyov, Oded Kar-Narayan, Sohini |
author_sort | Calahorra, Yonatan |
collection | PubMed |
description | Cellulose, a major constituent of our natural environment and a structured biodegradable biopolymer, has been shown to exhibit shear piezoelectricity with potential applications in energy harvesters, biomedical sensors, electro-active displays and actuators. In this regard, a high-aspect ratio nanofiber geometry is particularly attractive as flexing or bending will likely produce a larger piezoelectric response as compared to axial deformation in this material. Here we report self-assembled cellulose nanofibers (SA-CNFs) fabricated using a template-wetting process, whereby parent cellulose nanocrystals (CNCs) introduced into a nanoporous template assemble to form rod-like cellulose clusters, which then assemble into SA-CNFs. Annealed SA-CNFs were found to exhibit an anisotropic shear piezoelectric response as directly measured using non-destructive piezo-response force microscopy (ND-PFM). We interpret these results in light of the distinct hierarchical structure in our template-grown SA-CNFs as revealed by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (TEM). |
format | Online Article Text |
id | pubmed-6137605 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-61376052018-10-11 Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers Calahorra, Yonatan Datta, Anuja Famelton, James Kam, Doron Shoseyov, Oded Kar-Narayan, Sohini Nanoscale Chemistry Cellulose, a major constituent of our natural environment and a structured biodegradable biopolymer, has been shown to exhibit shear piezoelectricity with potential applications in energy harvesters, biomedical sensors, electro-active displays and actuators. In this regard, a high-aspect ratio nanofiber geometry is particularly attractive as flexing or bending will likely produce a larger piezoelectric response as compared to axial deformation in this material. Here we report self-assembled cellulose nanofibers (SA-CNFs) fabricated using a template-wetting process, whereby parent cellulose nanocrystals (CNCs) introduced into a nanoporous template assemble to form rod-like cellulose clusters, which then assemble into SA-CNFs. Annealed SA-CNFs were found to exhibit an anisotropic shear piezoelectric response as directly measured using non-destructive piezo-response force microscopy (ND-PFM). We interpret these results in light of the distinct hierarchical structure in our template-grown SA-CNFs as revealed by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (TEM). Royal Society of Chemistry 2018-09-21 2018-08-30 /pmc/articles/PMC6137605/ /pubmed/30160284 http://dx.doi.org/10.1039/c8nr04967j Text en This journal is © The Royal Society of Chemistry 2018 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
spellingShingle | Chemistry Calahorra, Yonatan Datta, Anuja Famelton, James Kam, Doron Shoseyov, Oded Kar-Narayan, Sohini Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers |
title | Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers
|
title_full | Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers
|
title_fullStr | Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers
|
title_full_unstemmed | Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers
|
title_short | Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers
|
title_sort | nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137605/ https://www.ncbi.nlm.nih.gov/pubmed/30160284 http://dx.doi.org/10.1039/c8nr04967j |
work_keys_str_mv | AT calahorrayonatan nanoscaleelectromechanicalpropertiesoftemplateassistedhierarchicalselfassembledcellulosenanofibers AT dattaanuja nanoscaleelectromechanicalpropertiesoftemplateassistedhierarchicalselfassembledcellulosenanofibers AT fameltonjames nanoscaleelectromechanicalpropertiesoftemplateassistedhierarchicalselfassembledcellulosenanofibers AT kamdoron nanoscaleelectromechanicalpropertiesoftemplateassistedhierarchicalselfassembledcellulosenanofibers AT shoseyovoded nanoscaleelectromechanicalpropertiesoftemplateassistedhierarchicalselfassembledcellulosenanofibers AT karnarayansohini nanoscaleelectromechanicalpropertiesoftemplateassistedhierarchicalselfassembledcellulosenanofibers |