Cargando…
A Bayesian Network Model for Predicting Post-stroke Outcomes With Available Risk Factors
Bayesian network is an increasingly popular method in modeling uncertain and complex problems, because its interpretability is often more useful than plain prediction. To satisfy the core requirement in medical research to obtain interpretable prediction with high accuracy, we constructed an inferen...
Autores principales: | Park, Eunjeong, Chang, Hyuk-jae, Nam, Hyo Suk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137617/ https://www.ncbi.nlm.nih.gov/pubmed/30245663 http://dx.doi.org/10.3389/fneur.2018.00699 |
Ejemplares similares
-
Low Ankle-Brachial Index Is Associated With Stroke Recurrence in Ischemic Stroke Patients With Atrial Fibrillation
por: Han, Minho, et al.
Publicado: (2021) -
Use of Machine Learning Classifiers and Sensor Data to Detect Neurological Deficit in Stroke Patients
por: Park, Eunjeong, et al.
Publicado: (2017) -
Impact of interankle blood pressure difference on major adverse cardiovascular events in cryptogenic stroke patients without peripheral artery disease: a retrospective cohort study
por: Han, Minho, et al.
Publicado: (2022) -
Comparison of the efficacy of acupuncture-related Therapies for post-stroke motor aphasia: A Bayesian network meta-analysis
por: Feng, Sisi, et al.
Publicado: (2022) -
The Paradoxical Protective Effect of Liver Steatosis on Severity and Functional Outcome of Ischemic Stroke
por: Baik, Minyoul, et al.
Publicado: (2019)