Cargando…
Structural and Mechanistic Analyses Reveal a Unique Cas4-like Protein in the Mimivirus Virophage Resistance Element System
A clustered regularly interspaced short palindromic repeats (CRISPR)-like “mimivirus virophage resistance element” (MIMIVIRE) system, which contains specific cascade genes and a CRISPR array against virophages, was reported in mimiviruses. An essential component of the MIMIVIRE system is R354, encod...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137704/ https://www.ncbi.nlm.nih.gov/pubmed/30428313 http://dx.doi.org/10.1016/j.isci.2018.04.001 |
Sumario: | A clustered regularly interspaced short palindromic repeats (CRISPR)-like “mimivirus virophage resistance element” (MIMIVIRE) system, which contains specific cascade genes and a CRISPR array against virophages, was reported in mimiviruses. An essential component of the MIMIVIRE system is R354, encoding a nuclease and a likely functional homolog of Cas4. Here we show that R354 is a dual nuclease with both exonuclease and endonuclease activities. Structural analysis revealed that the catalytic core domain of R354 is similar to those of Cas4 and λ exonuclease despite their low sequence identity. R354 forms a homodimer that is important for its exonuclease but not endonuclease activity. Structural comparisons between the active and semi-active states of R354 demonstrated that an activation loop adjacent to the catalytic site is critical for enzymatic activity. Overall, the results suggest that R354 belongs to a novel MIMIVIRE system involved in innate virus immunity and provides a template for the identification of new CRISPR systems in other species. |
---|