Cargando…

Soluble Aβ Oligomers Impair Dipolar Heterodendritic Plasticity by Activation of mGluR in the Hippocampal CA1 Region

Soluble Aβ oligomers (oAβs) contribute importantly to synaptotoxicity in Alzheimer disease (AD), but the mechanisms related to heterogeneity of synaptic functions at local circuits remain elusive. Nearly all studies of the effects of oAβs on hippocampal synaptic plasticity have only examined homosyn...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Jianhua, Li, Anna, Rajsombath, Molly, Dang, Yifan, Selkoe, Dennis J., Li, Shaomin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137707/
https://www.ncbi.nlm.nih.gov/pubmed/30240608
http://dx.doi.org/10.1016/j.isci.2018.07.018
Descripción
Sumario:Soluble Aβ oligomers (oAβs) contribute importantly to synaptotoxicity in Alzheimer disease (AD), but the mechanisms related to heterogeneity of synaptic functions at local circuits remain elusive. Nearly all studies of the effects of oAβs on hippocampal synaptic plasticity have only examined homosynaptic plasticity. Here we stimulated the Schaffer collaterals and then simultaneously recorded in stratum radiatum (apical dendrites) and stratum oriens (basal dendrites) of CA1 neurons. We found that the apical dendrites are significantly more vulnerable to oAβ-mediated synaptic dysfunction: the heterosynaptic basal dendritic long-term potentiation (LTP) remained unchanged, whereas the homosynaptic apical LTP was impaired. However, the heterosynaptic basal dendritic plasticity induced by either spaced 10-Hz bursts or low-frequency (1-Hz) stimulation was disrupted by oAβs in a mGluR5-dependent manner. These results suggest that different firing patterns in the same neurons may be selectively altered by soluble oAβs in an early phase of AD, before frank neurodegeneration.