Cargando…
Treponema pallidum promotes macrophage polarization and activates the NLRP3 inflammasome pathway to induce interleukin-1β production
BACKGROUND: The involvement of inflammasome activation and macrophage polarization during the process of syphilis infection remains unknown. In this study, A series of experiments were performed using human macrophages to research the role of NLRP3 inflammasome regulation in interleukin (IL)-1β prod...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137923/ https://www.ncbi.nlm.nih.gov/pubmed/30217146 http://dx.doi.org/10.1186/s12865-018-0265-9 |
Sumario: | BACKGROUND: The involvement of inflammasome activation and macrophage polarization during the process of syphilis infection remains unknown. In this study, A series of experiments were performed using human macrophages to research the role of NLRP3 inflammasome regulation in interleukin (IL)-1β production and its influence on macrophage polarization triggered by T. pallidum. RESULTS: The results showed that in M0 macrophages treated with T. pallidum, the M1-associated markers inducible nitric oxide synthase (iNOS), IL-1β and TNF-α were upregulated, and the M2-associated markers CD206 and IL-10 were downregulated. In addition, we observed NLRP3 inflammasome activation and IL-1β secretion in T. pallidum-treated macrophages, and the observed production of IL-1β occurred in a dose- and time-dependent manner. Moreover, the secretion of IL-1β by macrophages after T. pallidum treatment was notably reduced by anti-NLRP3 siRNA and caspase-1 inhibitor treatment. NAC, KCl, and CA074-ME treatment also suppressed IL-1β release from T. pallidum-treated macrophages. CONCLUSIONS: These findings showed that T. pallidum induces M0 macrophages to undergo M1 macrophage polarization and elevate IL-1β secretion through NLRP3. Moreover, the process of NLRP3 inflammasome activation and IL-1β production in macrophages in response to T. pallidum infection involves K(+) efflux, mitochondrial ROS production and cathepsin release. This study provides a new insight into the innate immune response to T. pallidum infection. |
---|