Cargando…
Characterization of a new semi-dominant dwarf allele of SLR1 and its potential application in hybrid rice breeding
The widespread introduction of semi-dwarf1 (sd1), also known as the ‘Green Revolution’ gene, has dramatically increased rice yield. However, the extensive use of limited sources of dwarf genes may cause ‘bottleneck’ effects in breeding new rice varieties. Alternative dwarf germplasms are quite urgen...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137977/ https://www.ncbi.nlm.nih.gov/pubmed/29955878 http://dx.doi.org/10.1093/jxb/ery243 |
Sumario: | The widespread introduction of semi-dwarf1 (sd1), also known as the ‘Green Revolution’ gene, has dramatically increased rice yield. However, the extensive use of limited sources of dwarf genes may cause ‘bottleneck’ effects in breeding new rice varieties. Alternative dwarf germplasms are quite urgent for rice breeding. Here, we characterized a new allele of the rice Slr1-d mutant, Slr1-d6, which reduced plant height by 37%, a much milder allele for dwarfism. Slr-d6 was still responsive to gibberellin (GA) to a reduced extent. The mutation site in Slr1-d6 was less conserved in the TVHYNP domain, leading to the specific semi-dominant dwarf phenotype. Expression of SLR1 and five key GA biosynthetic genes was disturbed in Slr1-d6, and the interaction between Slr1-d6 and GID1 was decreased. In the genetic background of cultivar 9311 with sd1 eliminated, Slr1-d6 homozygous plants were ~70 cm tall. Moreover, Slr1-d6 heterozygous plants were equivalent in height to the standard sd1 semi-dwarf 9311, but with a 25% yield increase, showing its potential application in hybrid rice breeding. |
---|