Cargando…
Improving classification of pollen grain images of the POLEN23E dataset through three different applications of deep learning convolutional neural networks
In palynology, the visual classification of pollen grains from different species is a hard task which is usually tackled by human operators using microscopes. Its complete automatization would save a high quantity of resources and provide valuable improvements especially for allergy-related informat...
Autores principales: | Sevillano, Víctor, Aznarte, José L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6138340/ https://www.ncbi.nlm.nih.gov/pubmed/30216353 http://dx.doi.org/10.1371/journal.pone.0201807 |
Ejemplares similares
-
Precise automatic classification of 46 different pollen types with convolutional neural networks
por: Sevillano, Víctor, et al.
Publicado: (2020) -
Granos de polen
por: Novalis, 1772-1801
Publicado: (1987) -
Pollen Grain Classification Based on Ensemble Transfer Learning on the Cretan Pollen Dataset
por: Tsiknakis, Nikos, et al.
Publicado: (2022) -
Pólenes anemófilos de El Salvador /
por: Lagos, Jorge Adalberto
Publicado: (1975) -
Polen y esporas : introducción a la palinología y vocabulario palinológico
por: Saenz de Rivas, Concepción
Publicado: (1978)