Cargando…
Dissecting cancer heterogeneity based on dimension reduction of transcriptomic profiles using extreme learning machines
It is becoming increasingly clear that major malignancies such as breast, colorectal and gastric cancers are not single disease entities, but comprising multiple cancer subtypes of distinct molecular properties. Molecular subtyping has been widely used to dissect inter-tumor biological heterogeneity...
Autores principales: | Wang, Kejun, Duan, Xin, Gao, Feng, Wang, Wei, Liu, Liangliang, Wang, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6138406/ https://www.ncbi.nlm.nih.gov/pubmed/30216380 http://dx.doi.org/10.1371/journal.pone.0203824 |
Ejemplares similares
-
Correction: Dissecting cancer heterogeneity based on dimension reduction of transcriptomic profiles using extreme learning machines
por: Wang, Kejun, et al.
Publicado: (2018) -
Dissecting Psychiatric Heterogeneity and Comorbidity with Core Region-Based Machine Learning
por: Lv, Qian, et al.
Publicado: (2023) -
Integration of Machine Learning Methods to Dissect Genetically Imputed Transcriptomic Profiles in Alzheimer’s Disease
por: Maj, Carlo, et al.
Publicado: (2019) -
Dissecting Cellular Heterogeneity Based on Network Denoising of scRNA-seq Using Local Scaling Self-Diffusion
por: Duan, Xin, et al.
Publicado: (2022) -
Dimension reduction of dynamics on modular and heterogeneous directed networks
por: Vegué, Marina, et al.
Publicado: (2023)