Cargando…
Gasdermin: A new player to the inflammasome game
Pyroptosis is a lytic type of programmed cell death that was traditionally associated with the involvement of inflammatory caspases, such as caspase-1. These inflammatory caspases are activated within multi-protein complexes called inflammasomes that are assembled in response to invading pathogens a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Chang Gung University
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6138612/ https://www.ncbi.nlm.nih.gov/pubmed/29433834 http://dx.doi.org/10.1016/j.bj.2017.10.002 |
Sumario: | Pyroptosis is a lytic type of programmed cell death that was traditionally associated with the involvement of inflammatory caspases, such as caspase-1. These inflammatory caspases are activated within multi-protein complexes called inflammasomes that are assembled in response to invading pathogens and/or danger signals. Pyroptotic cell death was suggested to evolve via the formation of pores in the plasma membrane, but the exact mechanism underlying the formation of these pores remained unclear. Recently, gasdermin D, a member of the gasdermin protein family was identified as a caspase substrate and essential effector of pyroptosis, being identified as the protagonist of membrane pore formation. Gasdermins have emerged as a family of new class of cell death inducers, but many questions remain unanswered. Here, we present an overview of recent work being done in the area of programmed cell death and the latest evidence regarding the role and participation of gasdermin D as an effector of pyroptosis. |
---|