Cargando…
Recognition of Schizophrenia with Regularized Support Vector Machine and Sequential Region of Interest Selection using Structural Magnetic Resonance Imaging
Structural brain abnormalities in schizophrenia have been well characterized with the application of univariate methods to magnetic resonance imaging (MRI) data. However, these traditional techniques lack sensitivity and predictive value at the individual level. Machine-learning approaches have emer...
Autores principales: | Chin, Rowena, You, Alex Xiaobin, Meng, Fanwen, Zhou, Juan, Sim, Kang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6138658/ https://www.ncbi.nlm.nih.gov/pubmed/30218016 http://dx.doi.org/10.1038/s41598-018-32290-9 |
Ejemplares similares
-
Regularization, optimization, kernels, and support vector machines
por: Suykens, Johan A K, et al.
Publicado: (2015) -
Learning with kernels: support vector machines, regularization, optimization, and beyond
por: Schölkopf, Bernhard, et al.
Publicado: (2002) -
CompareSVM: supervised, Support Vector Machine (SVM) inference of gene regularity networks
por: Gillani, Zeeshan, et al.
Publicado: (2014) -
Incorporating support vector machine with sequential minimal optimization to identify anticancer peptides
por: Wan, Yu, et al.
Publicado: (2021) -
Facial expression recognition using three-stage support vector machines
por: Dagher, Issam, et al.
Publicado: (2019)