Cargando…
Assortative mixing in spatially-extended networks
We focus on spatially-extended networks during their transition from short-range connectivities to a scale-free structure expressed by heavy-tailed degree-distribution. In particular, a model is introduced for the generation of such graphs, which combines spatial growth and preferential attachment....
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6138734/ https://www.ncbi.nlm.nih.gov/pubmed/30218078 http://dx.doi.org/10.1038/s41598-018-32160-4 |
Sumario: | We focus on spatially-extended networks during their transition from short-range connectivities to a scale-free structure expressed by heavy-tailed degree-distribution. In particular, a model is introduced for the generation of such graphs, which combines spatial growth and preferential attachment. In this model the transition to heterogeneous structures is always accompanied by a change in the graph’s degree-degree correlation properties: while high assortativity levels characterize the dominance of short distance couplings, long-range connectivity structures are associated with small amounts of disassortativity. Our results allow to infer that a disassortative mixing is essential for establishing long-range links. We discuss also how our findings are consistent with recent experimental studies of 2-dimensional neuronal cultures. |
---|