Cargando…
Aberration correction for low voltage optimized transmission electron microscopy
Further development of low voltage electron microscopy leads to an aberration correction of the device in order to improve its spatial resolution. The integration of a corrector to a desktop transmission electron microscope with exclusively low-voltage design seems to be a challenging task. The bene...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6138797/ https://www.ncbi.nlm.nih.gov/pubmed/30225204 http://dx.doi.org/10.1016/j.mex.2018.08.009 |
Sumario: | Further development of low voltage electron microscopy leads to an aberration correction of the device in order to improve its spatial resolution. The integration of a corrector to a desktop transmission electron microscope with exclusively low-voltage design seems to be a challenging task. The benefits and potential of the Rose hexapole corrector implemented to such a system are critically considered in this paper. The feasibility of miniaturized corrector suitable for desktop LVEM is especially discussed, including the aspect of corrector contribution to chromatic aberration that appears to be crucial. Optimal corrector parameters and resolution limits of such a system are proposed. • Improved spatial resolution; • Spherical aberration correction; • Permanent magnet transfer lenses. |
---|