Cargando…
Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action
BACKGROUND: The search for new antimicrobials should take into account drug resistance phenomenon. Medicinal plants are known as sources of potent antimicrobial compounds including flavonoids. The objective of this investigation was to evaluate the antimicrobial activities of flavonoid glycosides fr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139119/ https://www.ncbi.nlm.nih.gov/pubmed/30219066 http://dx.doi.org/10.1186/s12906-018-2321-7 |
_version_ | 1783355454541266944 |
---|---|
author | Tagousop, Cyrille Ngoufack Tamokou, Jean-de-Dieu Ekom, Steve Endeguele Ngnokam, David Voutquenne-Nazabadioko, Laurence |
author_facet | Tagousop, Cyrille Ngoufack Tamokou, Jean-de-Dieu Ekom, Steve Endeguele Ngnokam, David Voutquenne-Nazabadioko, Laurence |
author_sort | Tagousop, Cyrille Ngoufack |
collection | PubMed |
description | BACKGROUND: The search for new antimicrobials should take into account drug resistance phenomenon. Medicinal plants are known as sources of potent antimicrobial compounds including flavonoids. The objective of this investigation was to evaluate the antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum, as well as to determine their mechanism of antibacterial action using lysis, leakage and osmotic stress assays. METHODS: The plant extracts were prepared by maceration in organic solvents. Column chromatography of the n-butanol extract followed by purification of different fractions led to the isolation of five flavonoid glycosides. The antimicrobial activities of extracts/compounds were evaluated using the broth microdilution method. The bacteriolytic activity was evaluated using the time-kill kinetic method. The effect of extracts on the red blood cells and bacterial cell membrane was determined by spectrophotometric methods. RESULTS: Chrysoeriol-7-O-β-D-xyloside (1), luteolin-7-O-β-D-apiofuranosyl-(1 → 2)-β-D-xylopyranoside (2), chrysoeriol-7-O-β-D-apiofuranosyl-(1 → 2)-β-D-xylopyranoside (3), chrysoeriol-7-O-α-L-rhamnopyranosyl-(1 → 6)-β-D-(4"-hydrogeno sulfate) glucopyranoside (4) and isorhamnetin-3-O-α-L-rhamnopyranosyl-(1 → 6)-β-D-glucopyranoside (5) were isolated from G. grandulosum and showed different degrees of antimicrobial activities. Their antibacterial activities against multi-drug-resistant Vibrio cholerae strains were in some cases equal to, or higher than those of ciprofloxacin used as reference antibiotic. The antibacterial activities of flavonoid glycosides and chloramphenicol increased under osmotic stress (5% NaCl) whereas that of vancomycin decreased under this condition. V. cholerae suspension treated with flavonoid glycosides, showed a significant increase in the optical density at 260 nm, suggesting that nucleic acids were lost through a damaged cytoplasmic membrane. A decrease in the optical density of V. cholerae NB2 suspension treated with the isolated compounds was observed, indicating the lysis of bacterial cells. The tested samples were non-toxic to normal cells highlighting their good selectivity index. CONCLUSIONS: The results of the present study indicate that the purified flavonoids from G. glandulosum possess antimicrobial activities. Their mode of antibacterial activity is due to cell lysis and disruption of the cytoplasmic membrane upon membrane permeability. |
format | Online Article Text |
id | pubmed-6139119 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-61391192018-09-20 Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action Tagousop, Cyrille Ngoufack Tamokou, Jean-de-Dieu Ekom, Steve Endeguele Ngnokam, David Voutquenne-Nazabadioko, Laurence BMC Complement Altern Med Research Article BACKGROUND: The search for new antimicrobials should take into account drug resistance phenomenon. Medicinal plants are known as sources of potent antimicrobial compounds including flavonoids. The objective of this investigation was to evaluate the antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum, as well as to determine their mechanism of antibacterial action using lysis, leakage and osmotic stress assays. METHODS: The plant extracts were prepared by maceration in organic solvents. Column chromatography of the n-butanol extract followed by purification of different fractions led to the isolation of five flavonoid glycosides. The antimicrobial activities of extracts/compounds were evaluated using the broth microdilution method. The bacteriolytic activity was evaluated using the time-kill kinetic method. The effect of extracts on the red blood cells and bacterial cell membrane was determined by spectrophotometric methods. RESULTS: Chrysoeriol-7-O-β-D-xyloside (1), luteolin-7-O-β-D-apiofuranosyl-(1 → 2)-β-D-xylopyranoside (2), chrysoeriol-7-O-β-D-apiofuranosyl-(1 → 2)-β-D-xylopyranoside (3), chrysoeriol-7-O-α-L-rhamnopyranosyl-(1 → 6)-β-D-(4"-hydrogeno sulfate) glucopyranoside (4) and isorhamnetin-3-O-α-L-rhamnopyranosyl-(1 → 6)-β-D-glucopyranoside (5) were isolated from G. grandulosum and showed different degrees of antimicrobial activities. Their antibacterial activities against multi-drug-resistant Vibrio cholerae strains were in some cases equal to, or higher than those of ciprofloxacin used as reference antibiotic. The antibacterial activities of flavonoid glycosides and chloramphenicol increased under osmotic stress (5% NaCl) whereas that of vancomycin decreased under this condition. V. cholerae suspension treated with flavonoid glycosides, showed a significant increase in the optical density at 260 nm, suggesting that nucleic acids were lost through a damaged cytoplasmic membrane. A decrease in the optical density of V. cholerae NB2 suspension treated with the isolated compounds was observed, indicating the lysis of bacterial cells. The tested samples were non-toxic to normal cells highlighting their good selectivity index. CONCLUSIONS: The results of the present study indicate that the purified flavonoids from G. glandulosum possess antimicrobial activities. Their mode of antibacterial activity is due to cell lysis and disruption of the cytoplasmic membrane upon membrane permeability. BioMed Central 2018-09-15 /pmc/articles/PMC6139119/ /pubmed/30219066 http://dx.doi.org/10.1186/s12906-018-2321-7 Text en © The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Tagousop, Cyrille Ngoufack Tamokou, Jean-de-Dieu Ekom, Steve Endeguele Ngnokam, David Voutquenne-Nazabadioko, Laurence Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action |
title | Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action |
title_full | Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action |
title_fullStr | Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action |
title_full_unstemmed | Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action |
title_short | Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action |
title_sort | antimicrobial activities of flavonoid glycosides from graptophyllum grandulosum and their mechanism of antibacterial action |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139119/ https://www.ncbi.nlm.nih.gov/pubmed/30219066 http://dx.doi.org/10.1186/s12906-018-2321-7 |
work_keys_str_mv | AT tagousopcyrillengoufack antimicrobialactivitiesofflavonoidglycosidesfromgraptophyllumgrandulosumandtheirmechanismofantibacterialaction AT tamokoujeandedieu antimicrobialactivitiesofflavonoidglycosidesfromgraptophyllumgrandulosumandtheirmechanismofantibacterialaction AT ekomsteveendeguele antimicrobialactivitiesofflavonoidglycosidesfromgraptophyllumgrandulosumandtheirmechanismofantibacterialaction AT ngnokamdavid antimicrobialactivitiesofflavonoidglycosidesfromgraptophyllumgrandulosumandtheirmechanismofantibacterialaction AT voutquennenazabadiokolaurence antimicrobialactivitiesofflavonoidglycosidesfromgraptophyllumgrandulosumandtheirmechanismofantibacterialaction |