Cargando…
Super-Resolution of Magnetic Resonance Images via Convex Optimization with Local and Global Prior Regularization and Spectrum Fitting
Given a low-resolution image, there are many challenges to obtain a super-resolved, high-resolution image. Many of those approaches try to simultaneously upsample and deblur an image in signal domain. However, the nature of the super-resolution is to restore high-frequency components in frequency do...
Autores principales: | Kawamura, Naoki, Yokota, Tatsuya, Hontani, Hidekata |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139240/ https://www.ncbi.nlm.nih.gov/pubmed/30245706 http://dx.doi.org/10.1155/2018/9262847 |
Ejemplares similares
-
Robust 3D image reconstruction of pancreatic cancer tumors from histopathological images with different stains and its quantitative performance evaluation
por: Kugler, Mauricio, et al.
Publicado: (2019) -
Convex analysis and global optimization
por: Tuy, Hoang
Publicado: (1998) -
Abstract convexity and global optimization
por: Rubinov, Alexander
Publicado: (2000) -
Convex analysis and global optimization
por: Tuy, Hoang
Publicado: (2016) -
Subtype classification of malignant lymphoma using immunohistochemical staining pattern
por: Hashimoto, Noriaki, et al.
Publicado: (2022)