Cargando…
Cell Signaling of Caenorhabditis elegans in Response to Enterotoxigenic Escherichia coli Infection and Lactobacillus zeae Protection
Enterotoxigenic Escherichia coli (ETEC) infection causes the death of Caenorhabditis elegans, which can be prevented by certain Lactobacillus isolates. The host response of C. elegans to ETEC infection and its regulation by the isolates are, however, largely unclear. This study has revealed that, in...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139356/ https://www.ncbi.nlm.nih.gov/pubmed/30250464 http://dx.doi.org/10.3389/fimmu.2018.01745 |
_version_ | 1783355501909639168 |
---|---|
author | Zhou, Mengzhou Liu, Xiaozhen Yu, Hai Yin, Xianhua Nie, Shao-Ping Xie, Ming-Yong Chen, Wei Gong, Joshua |
author_facet | Zhou, Mengzhou Liu, Xiaozhen Yu, Hai Yin, Xianhua Nie, Shao-Ping Xie, Ming-Yong Chen, Wei Gong, Joshua |
author_sort | Zhou, Mengzhou |
collection | PubMed |
description | Enterotoxigenic Escherichia coli (ETEC) infection causes the death of Caenorhabditis elegans, which can be prevented by certain Lactobacillus isolates. The host response of C. elegans to ETEC infection and its regulation by the isolates are, however, largely unclear. This study has revealed that, in agreement with the results of life-span assays, the expression of the genes encoding p38 mitogen-activated protein kinase (MAPK) pathway (nsy-1, sek-1, and pmk-1), insulin/insulin-like growth factor (DAF/IGF) pathway (daf-16), or antimicrobial peptides (lys-7, spp-1, and abf-3) and other defensing molecules (abf-2, clec-85) was upregulated significantly when the wild-type nematode (N2) was subjected to ETEC infection. This upregulation was further enhanced by the pretreatment with Lactobacillus zeae LB1, but not with L. casei CL11. Mutants defective in the cell signaling of C. elegans were either more susceptible (defective in NSY-1, SEK-1, PMK-1, or DAF16) or more resistant (defective in AGE-1, DBL-1, SKN-1, or SOD-3) to ETEC infection compared with the wild-type. Mutants defective in antimicrobial peptides (LYS-7, SPP1, or ABF-3) were also more susceptible. In addition, mutants that are defective in NSY-1, SEK-1, PMK-1, DAF16, ABF-3, LYS-7, or SPP1 showed no response to the protection from L. zeae LB1. The expression of the genes encoding antimicrobial peptides (lys-7, spp-1, and abf-3) and other defensing molecules (abf-2, clec-60, and clec-85) were almost all upregulated in AGE-1- or DBL-1-defective mutant compared with the wild-type, which was further enhanced by the pretreatment of L. zeae LB1. The expression of these genes was, however, mostly downregulated in NSY-1- or DAF-16-defective mutant. These results suggest that L. zeae LB1 regulates C. elegans signaling through the p38 MAPK and DAF/IGF pathways to control the production of antimicrobial peptides and defensing molecules to combat ETEC infection. |
format | Online Article Text |
id | pubmed-6139356 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61393562018-09-24 Cell Signaling of Caenorhabditis elegans in Response to Enterotoxigenic Escherichia coli Infection and Lactobacillus zeae Protection Zhou, Mengzhou Liu, Xiaozhen Yu, Hai Yin, Xianhua Nie, Shao-Ping Xie, Ming-Yong Chen, Wei Gong, Joshua Front Immunol Immunology Enterotoxigenic Escherichia coli (ETEC) infection causes the death of Caenorhabditis elegans, which can be prevented by certain Lactobacillus isolates. The host response of C. elegans to ETEC infection and its regulation by the isolates are, however, largely unclear. This study has revealed that, in agreement with the results of life-span assays, the expression of the genes encoding p38 mitogen-activated protein kinase (MAPK) pathway (nsy-1, sek-1, and pmk-1), insulin/insulin-like growth factor (DAF/IGF) pathway (daf-16), or antimicrobial peptides (lys-7, spp-1, and abf-3) and other defensing molecules (abf-2, clec-85) was upregulated significantly when the wild-type nematode (N2) was subjected to ETEC infection. This upregulation was further enhanced by the pretreatment with Lactobacillus zeae LB1, but not with L. casei CL11. Mutants defective in the cell signaling of C. elegans were either more susceptible (defective in NSY-1, SEK-1, PMK-1, or DAF16) or more resistant (defective in AGE-1, DBL-1, SKN-1, or SOD-3) to ETEC infection compared with the wild-type. Mutants defective in antimicrobial peptides (LYS-7, SPP1, or ABF-3) were also more susceptible. In addition, mutants that are defective in NSY-1, SEK-1, PMK-1, DAF16, ABF-3, LYS-7, or SPP1 showed no response to the protection from L. zeae LB1. The expression of the genes encoding antimicrobial peptides (lys-7, spp-1, and abf-3) and other defensing molecules (abf-2, clec-60, and clec-85) were almost all upregulated in AGE-1- or DBL-1-defective mutant compared with the wild-type, which was further enhanced by the pretreatment of L. zeae LB1. The expression of these genes was, however, mostly downregulated in NSY-1- or DAF-16-defective mutant. These results suggest that L. zeae LB1 regulates C. elegans signaling through the p38 MAPK and DAF/IGF pathways to control the production of antimicrobial peptides and defensing molecules to combat ETEC infection. Frontiers Media S.A. 2018-09-10 /pmc/articles/PMC6139356/ /pubmed/30250464 http://dx.doi.org/10.3389/fimmu.2018.01745 Text en Copyright © 2018 Nie, Xie, Chen and Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Zhou, Mengzhou Liu, Xiaozhen Yu, Hai Yin, Xianhua Nie, Shao-Ping Xie, Ming-Yong Chen, Wei Gong, Joshua Cell Signaling of Caenorhabditis elegans in Response to Enterotoxigenic Escherichia coli Infection and Lactobacillus zeae Protection |
title | Cell Signaling of Caenorhabditis elegans in Response to Enterotoxigenic Escherichia coli Infection and Lactobacillus zeae Protection |
title_full | Cell Signaling of Caenorhabditis elegans in Response to Enterotoxigenic Escherichia coli Infection and Lactobacillus zeae Protection |
title_fullStr | Cell Signaling of Caenorhabditis elegans in Response to Enterotoxigenic Escherichia coli Infection and Lactobacillus zeae Protection |
title_full_unstemmed | Cell Signaling of Caenorhabditis elegans in Response to Enterotoxigenic Escherichia coli Infection and Lactobacillus zeae Protection |
title_short | Cell Signaling of Caenorhabditis elegans in Response to Enterotoxigenic Escherichia coli Infection and Lactobacillus zeae Protection |
title_sort | cell signaling of caenorhabditis elegans in response to enterotoxigenic escherichia coli infection and lactobacillus zeae protection |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139356/ https://www.ncbi.nlm.nih.gov/pubmed/30250464 http://dx.doi.org/10.3389/fimmu.2018.01745 |
work_keys_str_mv | AT zhoumengzhou cellsignalingofcaenorhabditiselegansinresponsetoenterotoxigenicescherichiacoliinfectionandlactobacilluszeaeprotection AT liuxiaozhen cellsignalingofcaenorhabditiselegansinresponsetoenterotoxigenicescherichiacoliinfectionandlactobacilluszeaeprotection AT yuhai cellsignalingofcaenorhabditiselegansinresponsetoenterotoxigenicescherichiacoliinfectionandlactobacilluszeaeprotection AT yinxianhua cellsignalingofcaenorhabditiselegansinresponsetoenterotoxigenicescherichiacoliinfectionandlactobacilluszeaeprotection AT nieshaoping cellsignalingofcaenorhabditiselegansinresponsetoenterotoxigenicescherichiacoliinfectionandlactobacilluszeaeprotection AT xiemingyong cellsignalingofcaenorhabditiselegansinresponsetoenterotoxigenicescherichiacoliinfectionandlactobacilluszeaeprotection AT chenwei cellsignalingofcaenorhabditiselegansinresponsetoenterotoxigenicescherichiacoliinfectionandlactobacilluszeaeprotection AT gongjoshua cellsignalingofcaenorhabditiselegansinresponsetoenterotoxigenicescherichiacoliinfectionandlactobacilluszeaeprotection |