Cargando…
Performance evaluation of friction stir welding using machine learning approaches
The aim of the present study is to evaluate the potential of sophisticated machine learning methodologies, i.e. Gaussian process (GPR) regression, support vector machining (SVM), and multi-linear regression (MLR) for ultimate tensile strength (UTS) of friction stir welded joint. Three regression mod...
Autores principales: | Verma, Shubham, Gupta, Meenu, Misra, Joy Prakash |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139393/ https://www.ncbi.nlm.nih.gov/pubmed/30225205 http://dx.doi.org/10.1016/j.mex.2018.09.002 |
Ejemplares similares
-
Friction Stir Welding and Friction Spot Stir Welding Processes of Polymers—State of the Art
por: Lambiase, Francesco, et al.
Publicado: (2020) -
Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy
por: Campanelli, Sabina Luisa, et al.
Publicado: (2013) -
Dataset for interpreting the Circos figures used in the review of friction stir welding of titanium alloys
por: Gangwar, Kapil, et al.
Publicado: (2018) -
On the Fatigue Performance of Friction-Stir Welded Aluminum Alloys
por: Malopheyev, Sergey, et al.
Publicado: (2020) -
Optimization of Friction Stir Welding Tool Advance Speed via Monte-Carlo Simulation of the Friction Stir Welding Process
por: Fraser, Kirk A., et al.
Publicado: (2014)