Cargando…

Plasminogen activation triggers transthyretin amyloidogenesis in vitro

Systemic amyloidosis is a usually fatal disease caused by extracellular accumulation of abnormal protein fibers, amyloid fibrils, derived by misfolding and aggregation of soluble globular plasma protein precursors. Both WT and genetic variants of the normal plasma protein transthyretin (TTR) form am...

Descripción completa

Detalles Bibliográficos
Autores principales: Mangione, P. Patrizia, Verona, Guglielmo, Corazza, Alessandra, Marcoux, Julien, Canetti, Diana, Giorgetti, Sofia, Raimondi, Sara, Stoppini, Monica, Esposito, Marilena, Relini, Annalisa, Canale, Claudio, Valli, Maurizia, Marchese, Loredana, Faravelli, Giulia, Obici, Laura, Hawkins, Philip N., Taylor, Graham W., Gillmore, Julian D., Pepys, Mark B., Bellotti, Vittorio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139548/
https://www.ncbi.nlm.nih.gov/pubmed/30018138
http://dx.doi.org/10.1074/jbc.RA118.003990
_version_ 1783355527395278848
author Mangione, P. Patrizia
Verona, Guglielmo
Corazza, Alessandra
Marcoux, Julien
Canetti, Diana
Giorgetti, Sofia
Raimondi, Sara
Stoppini, Monica
Esposito, Marilena
Relini, Annalisa
Canale, Claudio
Valli, Maurizia
Marchese, Loredana
Faravelli, Giulia
Obici, Laura
Hawkins, Philip N.
Taylor, Graham W.
Gillmore, Julian D.
Pepys, Mark B.
Bellotti, Vittorio
author_facet Mangione, P. Patrizia
Verona, Guglielmo
Corazza, Alessandra
Marcoux, Julien
Canetti, Diana
Giorgetti, Sofia
Raimondi, Sara
Stoppini, Monica
Esposito, Marilena
Relini, Annalisa
Canale, Claudio
Valli, Maurizia
Marchese, Loredana
Faravelli, Giulia
Obici, Laura
Hawkins, Philip N.
Taylor, Graham W.
Gillmore, Julian D.
Pepys, Mark B.
Bellotti, Vittorio
author_sort Mangione, P. Patrizia
collection PubMed
description Systemic amyloidosis is a usually fatal disease caused by extracellular accumulation of abnormal protein fibers, amyloid fibrils, derived by misfolding and aggregation of soluble globular plasma protein precursors. Both WT and genetic variants of the normal plasma protein transthyretin (TTR) form amyloid, but neither the misfolding leading to fibrillogenesis nor the anatomical localization of TTR amyloid deposition are understood. We have previously shown that, under physiological conditions, trypsin cleaves human TTR in a mechano-enzymatic mechanism that generates abundant amyloid fibrils in vitro. In sharp contrast, the widely used in vitro model of denaturation and aggregation of TTR by prolonged exposure to pH 4.0 yields almost no clearly defined amyloid fibrils. However, the exclusive duodenal location of trypsin means that this enzyme cannot contribute to systemic extracellular TTR amyloid deposition in vivo. Here, we therefore conducted a bioinformatics search for systemically active tryptic proteases with appropriate tissue distribution, which unexpectedly identified plasmin as the leading candidate. We confirmed that plasmin, just as trypsin, selectively cleaves human TTR between residues 48 and 49 under physiological conditions in vitro. Truncated and full-length protomers are then released from the native homotetramer and rapidly aggregate into abundant fibrils indistinguishable from ex vivo TTR amyloid. Our findings suggest that physiological fibrinolysis is likely to play a critical role in TTR amyloid formation in vivo. Identification of this surprising intersection between two hitherto unrelated pathways opens new avenues for elucidating the mechanisms of TTR amyloidosis, for seeking susceptibility risk factors, and for therapeutic innovation.
format Online
Article
Text
id pubmed-6139548
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-61395482018-09-18 Plasminogen activation triggers transthyretin amyloidogenesis in vitro Mangione, P. Patrizia Verona, Guglielmo Corazza, Alessandra Marcoux, Julien Canetti, Diana Giorgetti, Sofia Raimondi, Sara Stoppini, Monica Esposito, Marilena Relini, Annalisa Canale, Claudio Valli, Maurizia Marchese, Loredana Faravelli, Giulia Obici, Laura Hawkins, Philip N. Taylor, Graham W. Gillmore, Julian D. Pepys, Mark B. Bellotti, Vittorio J Biol Chem Molecular Bases of Disease Systemic amyloidosis is a usually fatal disease caused by extracellular accumulation of abnormal protein fibers, amyloid fibrils, derived by misfolding and aggregation of soluble globular plasma protein precursors. Both WT and genetic variants of the normal plasma protein transthyretin (TTR) form amyloid, but neither the misfolding leading to fibrillogenesis nor the anatomical localization of TTR amyloid deposition are understood. We have previously shown that, under physiological conditions, trypsin cleaves human TTR in a mechano-enzymatic mechanism that generates abundant amyloid fibrils in vitro. In sharp contrast, the widely used in vitro model of denaturation and aggregation of TTR by prolonged exposure to pH 4.0 yields almost no clearly defined amyloid fibrils. However, the exclusive duodenal location of trypsin means that this enzyme cannot contribute to systemic extracellular TTR amyloid deposition in vivo. Here, we therefore conducted a bioinformatics search for systemically active tryptic proteases with appropriate tissue distribution, which unexpectedly identified plasmin as the leading candidate. We confirmed that plasmin, just as trypsin, selectively cleaves human TTR between residues 48 and 49 under physiological conditions in vitro. Truncated and full-length protomers are then released from the native homotetramer and rapidly aggregate into abundant fibrils indistinguishable from ex vivo TTR amyloid. Our findings suggest that physiological fibrinolysis is likely to play a critical role in TTR amyloid formation in vivo. Identification of this surprising intersection between two hitherto unrelated pathways opens new avenues for elucidating the mechanisms of TTR amyloidosis, for seeking susceptibility risk factors, and for therapeutic innovation. American Society for Biochemistry and Molecular Biology 2018-09-14 2018-07-17 /pmc/articles/PMC6139548/ /pubmed/30018138 http://dx.doi.org/10.1074/jbc.RA118.003990 Text en © 2018 Mangione et al. Author's Choice—Final version open access under the terms of the Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0) .
spellingShingle Molecular Bases of Disease
Mangione, P. Patrizia
Verona, Guglielmo
Corazza, Alessandra
Marcoux, Julien
Canetti, Diana
Giorgetti, Sofia
Raimondi, Sara
Stoppini, Monica
Esposito, Marilena
Relini, Annalisa
Canale, Claudio
Valli, Maurizia
Marchese, Loredana
Faravelli, Giulia
Obici, Laura
Hawkins, Philip N.
Taylor, Graham W.
Gillmore, Julian D.
Pepys, Mark B.
Bellotti, Vittorio
Plasminogen activation triggers transthyretin amyloidogenesis in vitro
title Plasminogen activation triggers transthyretin amyloidogenesis in vitro
title_full Plasminogen activation triggers transthyretin amyloidogenesis in vitro
title_fullStr Plasminogen activation triggers transthyretin amyloidogenesis in vitro
title_full_unstemmed Plasminogen activation triggers transthyretin amyloidogenesis in vitro
title_short Plasminogen activation triggers transthyretin amyloidogenesis in vitro
title_sort plasminogen activation triggers transthyretin amyloidogenesis in vitro
topic Molecular Bases of Disease
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139548/
https://www.ncbi.nlm.nih.gov/pubmed/30018138
http://dx.doi.org/10.1074/jbc.RA118.003990
work_keys_str_mv AT mangioneppatrizia plasminogenactivationtriggerstransthyretinamyloidogenesisinvitro
AT veronaguglielmo plasminogenactivationtriggerstransthyretinamyloidogenesisinvitro
AT corazzaalessandra plasminogenactivationtriggerstransthyretinamyloidogenesisinvitro
AT marcouxjulien plasminogenactivationtriggerstransthyretinamyloidogenesisinvitro
AT canettidiana plasminogenactivationtriggerstransthyretinamyloidogenesisinvitro
AT giorgettisofia plasminogenactivationtriggerstransthyretinamyloidogenesisinvitro
AT raimondisara plasminogenactivationtriggerstransthyretinamyloidogenesisinvitro
AT stoppinimonica plasminogenactivationtriggerstransthyretinamyloidogenesisinvitro
AT espositomarilena plasminogenactivationtriggerstransthyretinamyloidogenesisinvitro
AT reliniannalisa plasminogenactivationtriggerstransthyretinamyloidogenesisinvitro
AT canaleclaudio plasminogenactivationtriggerstransthyretinamyloidogenesisinvitro
AT vallimaurizia plasminogenactivationtriggerstransthyretinamyloidogenesisinvitro
AT marcheseloredana plasminogenactivationtriggerstransthyretinamyloidogenesisinvitro
AT faravelligiulia plasminogenactivationtriggerstransthyretinamyloidogenesisinvitro
AT obicilaura plasminogenactivationtriggerstransthyretinamyloidogenesisinvitro
AT hawkinsphilipn plasminogenactivationtriggerstransthyretinamyloidogenesisinvitro
AT taylorgrahamw plasminogenactivationtriggerstransthyretinamyloidogenesisinvitro
AT gillmorejuliand plasminogenactivationtriggerstransthyretinamyloidogenesisinvitro
AT pepysmarkb plasminogenactivationtriggerstransthyretinamyloidogenesisinvitro
AT bellottivittorio plasminogenactivationtriggerstransthyretinamyloidogenesisinvitro