Cargando…

XUV double-pulses with femtosecond to 650 ps separation from a multilayer-mirror-based split-and-delay unit at FLASH

Extreme ultraviolet (XUV) and X-ray free-electron lasers enable new scientific opportunities. Their ultra-intense coherent femtosecond pulses give unprecedented access to the structure of undepositable nanoscale objects and to transient states of highly excited matter. In order to probe the ultrafas...

Descripción completa

Detalles Bibliográficos
Autores principales: Sauppe, Mario, Rompotis, Dimitrios, Erk, Benjamin, Bari, Sadia, Bischoff, Tobias, Boll, Rebecca, Bomme, Cédric, Bostedt, Christoph, Dörner, Simon, Düsterer, Stefan, Feigl, Torsten, Flückiger, Leonie, Gorkhover, Tais, Kolatzki, Katharina, Langbehn, Bruno, Monserud, Nils, Müller, Erland, Müller, Jan P., Passow, Christopher, Ramm, Daniel, Rolles, Daniel, Schubert, Kaja, Schwob, Lucas, Senfftleben, Björn, Treusch, Rolf, Ulmer, Anatoli, Weigelt, Holger, Zimbalski, Jannis, Zimmermann, Julian, Möller, Thomas, Rupp, Daniela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6140391/
https://www.ncbi.nlm.nih.gov/pubmed/30179193
http://dx.doi.org/10.1107/S1600577518006094
Descripción
Sumario:Extreme ultraviolet (XUV) and X-ray free-electron lasers enable new scientific opportunities. Their ultra-intense coherent femtosecond pulses give unprecedented access to the structure of undepositable nanoscale objects and to transient states of highly excited matter. In order to probe the ultrafast complex light-induced dynamics on the relevant time scales, the multi-purpose end-station CAMP at the free-electron laser FLASH has been complemented by the novel multilayer-mirror-based split-and-delay unit DESC (DElay Stage for CAMP) for time-resolved experiments. XUV double-pulses with delays adjustable from zero femtoseconds up to 650 picoseconds are generated by reflecting under near-normal incidence, exceeding the time range accessible with existing XUV split-and-delay units. Procedures to establish temporal and spatial overlap of the two pulses in CAMP are presented, with emphasis on the optimization of the spatial overlap at long time-delays via time-dependent features, for example in ion spectra of atomic clusters.