Cargando…
Inferring dynamic topology for decoding spatiotemporal structures in complex heterogeneous networks
Extracting complex interactions (i.e., dynamic topologies) has been an essential, but difficult, step toward understanding large, complex, and diverse systems including biological, financial, and electrical networks. However, reliable and efficient methods for the recovery or estimation of network t...
Autores principales: | Wang, Shuo, Herzog, Erik D., Kiss, István Z., Schwartz, William J., Bloch, Guy, Sebek, Michael, Granados-Fuentes, Daniel, Wang, Liang, Li, Jr-Shin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6140519/ https://www.ncbi.nlm.nih.gov/pubmed/30150403 http://dx.doi.org/10.1073/pnas.1721286115 |
Ejemplares similares
-
Decoding Network Structure in On-Chip Integrated Flow Cells with Synchronization of Electrochemical Oscillators
por: Jia, Yanxin, et al.
Publicado: (2017) -
Decoding of spatiotemporal activity of auditory information in the cortex
por: Hara, Yusuke, et al.
Publicado: (2011) -
Network Topologies Decoding Cervical Cancer
por: Jalan, Sarika, et al.
Publicado: (2015) -
Decoding the byssus fabrication by spatiotemporal secretome analysis of scallop foot
por: Dai, Xiaoting, et al.
Publicado: (2022) -
Decoding the Fundamental Drivers of Phylodynamic Inference
por: Featherstone, Leo A, et al.
Publicado: (2023)