Cargando…

What Is the Optimal Radiation Technique for Esophageal Cancer? A Dosimetric Comparison of Four Techniques

Background Esophageal cancer treatment requires large radiation fields due to the deep location of the esophagus in the mediastinum and the high incidence of radial spread. There is no optimal radiation technique to ensure appropriate target coverage and minimal dose to all normal structures. Method...

Descripción completa

Detalles Bibliográficos
Autores principales: Fawaz, Ziad Simon, Kazandjian, Suzanne, Tsui, James M, Devic, Dr Slobodan, Lecavalier-Barsoum, Magali, Vuong, Te, Elakshar, Sara, Garant, Aurelie, Lavoie, Isabelle, Niazi, Tamin M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6141055/
https://www.ncbi.nlm.nih.gov/pubmed/30237946
http://dx.doi.org/10.7759/cureus.2985
Descripción
Sumario:Background Esophageal cancer treatment requires large radiation fields due to the deep location of the esophagus in the mediastinum and the high incidence of radial spread. There is no optimal radiation technique to ensure appropriate target coverage and minimal dose to all normal structures. Methods Fifteen consecutive cases of locally advanced esophageal cancer treated with radical chemoradiation (CRT) were analyzed. The total prescribed dose was 50.4 Gy in 28 fractions. A total of 60 plans were generated for analysis, including four different methods for each case. Method 1 consisted of a four-field conformal technique; method 2 was a two-plan technique (antero-posterior (AP), postero-anterior (PA), two posterior oblique fields (RPO and LPO)); method 3 was a three-field conformal technique (AP, LPO, RPO); and method 4 was a volumetric modulated arc radiotherapy (VMAT) technique. Dose ratios were calculated using the minimum, maximum, mean, and median doses of methods 2-4 over the dose of method 1. Ratios for the planning target volume (PTV) and to surrounding organs were analyzed. Results The mean PTV dose ratio ranged from 0.994 to 1.048 (SD = 0.01) representing an adequate target coverage for all techniques based on an analysis of variance (ANOVA). For the lungs, method 2 had the lowest lung V20 with a ratio of 0.861 (SD = 0.12), whereas method 3 had the highest with 1.644 (SD = 0.14). For the heart, method 3 had the lowest heart V40 with a mean dose ratio of 0.807 (SD = 0.09), whereas method 2 had the highest with 1.160 (SD = 0.11). For the liver, method 2 had the lowest V30 with a mean ratio of 0.857 (SD = 0.1) whereas method 4 had the highest with 1.672 (SD = 0.48). For the spinal cord, method 3 had the lowest mean dose ratio of 0.559 (SD = 0.09) whereas method 2 had the highest with 1.094 (SD = 0.04). Conclusion The four radiation techniques for esophageal cancer treatment were appropriate for target coverage. Method 2 had the most organ-sparing effect for the lungs and liver, and method 3 for the heart and spinal cord. VMAT did not add any significant sparing. A case-by-case decision should be made based on the patient’s comorbidities.