Cargando…
Low-frequency ultrasound enhances chemotherapy sensitivity and induces autophagy in PTX-resistant PC-3 cells via the endoplasmic reticulum stress-mediated PI3K/Akt/mTOR signaling pathway
BACKGROUND: Sonodynamic therapy (SDT) is an emerging tumor-inhibiting method that has gained attention in cancer therapy in the last several years. Although autophagy has been observed in SDT-treated cancer cells, its role and mechanism of action remain unclear. This study aimed to investigate the e...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6141110/ https://www.ncbi.nlm.nih.gov/pubmed/30254455 http://dx.doi.org/10.2147/OTT.S176744 |
_version_ | 1783355652015390720 |
---|---|
author | Wu, Yuqi Liu, Xiaobing Qin, Zizhen Hu, Li Wang, Xiangwei |
author_facet | Wu, Yuqi Liu, Xiaobing Qin, Zizhen Hu, Li Wang, Xiangwei |
author_sort | Wu, Yuqi |
collection | PubMed |
description | BACKGROUND: Sonodynamic therapy (SDT) is an emerging tumor-inhibiting method that has gained attention in cancer therapy in the last several years. Although autophagy has been observed in SDT-treated cancer cells, its role and mechanism of action remain unclear. This study aimed to investigate the effects of low-frequency ultrasound on autophagy and drug-resistance of paclitaxel (PTX)-resistant PC-3 cells via the endoplasmic reticulum stress (ERs)-mediated PI3K/AT/mTOR signaling pathway. METHODS: CCK-8 assay was conducted to select the appropriate exposure time for PTX-resistant PC-3 cells under low-frequency ultrasound. PTX-resistant PC-3 cells were divided into a control group, PTX group, ultrasound group, ultrasound + PTX group, ultrasound + PTX + autophagy-related gene 5 (Atg5) siRNA group, and ultrasound + 4-PBA (an ERs inhibitor) group. Autophagy was observed by transmission electron microscopy (TEM) and fluorescence microscopy. Cell proliferation was evaluated using CCK-8 assay; apoptosis was detected by flow cytometry. Expression of multiple drug-resistance genes was detected by qRT-PCR. Western blotting was used to detect the expression of ERS-related proteins, autophagy-related proteins, apoptosis-related proteins, and PI3K/AKT/mTOR pathway-related proteins. RESULTS: Ten-second exposure was selected as optimal for all experiments. Compared to the PTX group, the level of autophagy, inhibition rate, apoptosis rate, and expression of ERS-related proteins (GRP78) increased, whereas the expression of multiple drug-resistance genes (MRP3, MRP7, and P-glycoprotein), PI3K/AKT/mTOR pathway-related proteins (PI3K, p-AKT, mTORC1), and apoptosis-related proteins (Bcl-2, NF-κB) decreased in PTX-resistant PC-3 cells after low-frequency ultrasound and PTX treatment for 24 h. These trends were more obvious after treatment with Atg5 siRNA, excluding the autophagy level. Post 4-PBA-treatment, the expression of GRP78 and LC3II proteins decreased, whereas that of PI3K, p-AKT, and mTORC1 increased. CONCLUSION: Results indicated that ultrasound induces autophagy by ERs-mediated PI3K/AKT/mTOR signaling pathway in PTX-resistant PC-3 cells; this autophagy acts as a cytoprotector during low-frequency ultrasound-mediated reversal of drug resistance. |
format | Online Article Text |
id | pubmed-6141110 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-61411102018-09-25 Low-frequency ultrasound enhances chemotherapy sensitivity and induces autophagy in PTX-resistant PC-3 cells via the endoplasmic reticulum stress-mediated PI3K/Akt/mTOR signaling pathway Wu, Yuqi Liu, Xiaobing Qin, Zizhen Hu, Li Wang, Xiangwei Onco Targets Ther Original Research BACKGROUND: Sonodynamic therapy (SDT) is an emerging tumor-inhibiting method that has gained attention in cancer therapy in the last several years. Although autophagy has been observed in SDT-treated cancer cells, its role and mechanism of action remain unclear. This study aimed to investigate the effects of low-frequency ultrasound on autophagy and drug-resistance of paclitaxel (PTX)-resistant PC-3 cells via the endoplasmic reticulum stress (ERs)-mediated PI3K/AT/mTOR signaling pathway. METHODS: CCK-8 assay was conducted to select the appropriate exposure time for PTX-resistant PC-3 cells under low-frequency ultrasound. PTX-resistant PC-3 cells were divided into a control group, PTX group, ultrasound group, ultrasound + PTX group, ultrasound + PTX + autophagy-related gene 5 (Atg5) siRNA group, and ultrasound + 4-PBA (an ERs inhibitor) group. Autophagy was observed by transmission electron microscopy (TEM) and fluorescence microscopy. Cell proliferation was evaluated using CCK-8 assay; apoptosis was detected by flow cytometry. Expression of multiple drug-resistance genes was detected by qRT-PCR. Western blotting was used to detect the expression of ERS-related proteins, autophagy-related proteins, apoptosis-related proteins, and PI3K/AKT/mTOR pathway-related proteins. RESULTS: Ten-second exposure was selected as optimal for all experiments. Compared to the PTX group, the level of autophagy, inhibition rate, apoptosis rate, and expression of ERS-related proteins (GRP78) increased, whereas the expression of multiple drug-resistance genes (MRP3, MRP7, and P-glycoprotein), PI3K/AKT/mTOR pathway-related proteins (PI3K, p-AKT, mTORC1), and apoptosis-related proteins (Bcl-2, NF-κB) decreased in PTX-resistant PC-3 cells after low-frequency ultrasound and PTX treatment for 24 h. These trends were more obvious after treatment with Atg5 siRNA, excluding the autophagy level. Post 4-PBA-treatment, the expression of GRP78 and LC3II proteins decreased, whereas that of PI3K, p-AKT, and mTORC1 increased. CONCLUSION: Results indicated that ultrasound induces autophagy by ERs-mediated PI3K/AKT/mTOR signaling pathway in PTX-resistant PC-3 cells; this autophagy acts as a cytoprotector during low-frequency ultrasound-mediated reversal of drug resistance. Dove Medical Press 2018-09-10 /pmc/articles/PMC6141110/ /pubmed/30254455 http://dx.doi.org/10.2147/OTT.S176744 Text en © 2018 Wu et al. This work is published and licensed by Dove Medical Press Limited The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Wu, Yuqi Liu, Xiaobing Qin, Zizhen Hu, Li Wang, Xiangwei Low-frequency ultrasound enhances chemotherapy sensitivity and induces autophagy in PTX-resistant PC-3 cells via the endoplasmic reticulum stress-mediated PI3K/Akt/mTOR signaling pathway |
title | Low-frequency ultrasound enhances chemotherapy sensitivity and induces autophagy in PTX-resistant PC-3 cells via the endoplasmic reticulum stress-mediated PI3K/Akt/mTOR signaling pathway |
title_full | Low-frequency ultrasound enhances chemotherapy sensitivity and induces autophagy in PTX-resistant PC-3 cells via the endoplasmic reticulum stress-mediated PI3K/Akt/mTOR signaling pathway |
title_fullStr | Low-frequency ultrasound enhances chemotherapy sensitivity and induces autophagy in PTX-resistant PC-3 cells via the endoplasmic reticulum stress-mediated PI3K/Akt/mTOR signaling pathway |
title_full_unstemmed | Low-frequency ultrasound enhances chemotherapy sensitivity and induces autophagy in PTX-resistant PC-3 cells via the endoplasmic reticulum stress-mediated PI3K/Akt/mTOR signaling pathway |
title_short | Low-frequency ultrasound enhances chemotherapy sensitivity and induces autophagy in PTX-resistant PC-3 cells via the endoplasmic reticulum stress-mediated PI3K/Akt/mTOR signaling pathway |
title_sort | low-frequency ultrasound enhances chemotherapy sensitivity and induces autophagy in ptx-resistant pc-3 cells via the endoplasmic reticulum stress-mediated pi3k/akt/mtor signaling pathway |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6141110/ https://www.ncbi.nlm.nih.gov/pubmed/30254455 http://dx.doi.org/10.2147/OTT.S176744 |
work_keys_str_mv | AT wuyuqi lowfrequencyultrasoundenhanceschemotherapysensitivityandinducesautophagyinptxresistantpc3cellsviatheendoplasmicreticulumstressmediatedpi3kaktmtorsignalingpathway AT liuxiaobing lowfrequencyultrasoundenhanceschemotherapysensitivityandinducesautophagyinptxresistantpc3cellsviatheendoplasmicreticulumstressmediatedpi3kaktmtorsignalingpathway AT qinzizhen lowfrequencyultrasoundenhanceschemotherapysensitivityandinducesautophagyinptxresistantpc3cellsviatheendoplasmicreticulumstressmediatedpi3kaktmtorsignalingpathway AT huli lowfrequencyultrasoundenhanceschemotherapysensitivityandinducesautophagyinptxresistantpc3cellsviatheendoplasmicreticulumstressmediatedpi3kaktmtorsignalingpathway AT wangxiangwei lowfrequencyultrasoundenhanceschemotherapysensitivityandinducesautophagyinptxresistantpc3cellsviatheendoplasmicreticulumstressmediatedpi3kaktmtorsignalingpathway |