Cargando…
Protein X-ray crystallography of the 14-3-3ζ/SOS1 complex
Activation of Ras-MAPK signaling regulates essential cellular functions; its aberration leads to irregular cell proliferation and differentiation (i.e. pancreatic cancer). Previously, it was revealed that the formation of the complex of the 14-3-3 protein and the Son of sevenless homolog 1 (SOS1) -...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6141376/ https://www.ncbi.nlm.nih.gov/pubmed/30229043 http://dx.doi.org/10.1016/j.dib.2018.06.060 |
Sumario: | Activation of Ras-MAPK signaling regulates essential cellular functions; its aberration leads to irregular cell proliferation and differentiation (i.e. pancreatic cancer). Previously, it was revealed that the formation of the complex of the 14-3-3 protein and the Son of sevenless homolog 1 (SOS1) - one of the main actors of the Ras-MAPK cascade -, would represent a key-process to downstream the deviant Ra-MAPK signaling. In this data article we attempt to shed some light on the 3D structure, providing useful details about the crystallization process of the 14-3-3ζ dimer in complex with the 13-mer SOS1pS(1161). The crystal structure is deposited at the Protein Data Bank with identifier 6F08. This Data in Brief article refers to “Structural characterization of 14-3-3ζ in complex with the human Son of sevenless homolog 1 (SOS1) (2018).” |
---|