Cargando…
Immobilizing Laccase on Different Species Wood Biochar to Remove the Chlorinated Biphenyl in Wastewater
Biochars produced from two different wood species over a microwave assisted pyrolysis process were used as novel and green-based supports for immobilizing enzyme, laccase in particular. The results obtained from FT-IR, SEM and BET measurements indicated that Maple biochar with honeycomb structure ha...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6141527/ https://www.ncbi.nlm.nih.gov/pubmed/30224733 http://dx.doi.org/10.1038/s41598-018-32013-0 |
Sumario: | Biochars produced from two different wood species over a microwave assisted pyrolysis process were used as novel and green-based supports for immobilizing enzyme, laccase in particular. The results obtained from FT-IR, SEM and BET measurements indicated that Maple biochar with honeycomb structure has higher surface area and pore volume than Spruce biochar; and there exist O-H, C-H, C=O and C=C groups in biochars for potential chemical modification. The best laccase immobilization conditions identified from an orthogonal experiment were pH = 3, laccase concentration 16 g/L and contact time 8 h. Under such conditions, the high immobilization yield (64.2%) and amount (11.14 mg/g) of laccase on Maple biochar were achieved, leading to the significantly improved thermal stability of laccase. Moreover, the immobilized laccase is reusable and enhanced the enzymatic degradation of 4-hydroxy-3,5-dichlorobiphenyl (71.4% yield), thus creating a promising and novel type of adsorbent in the removal of polychlorinated biphenyls from wastewater. |
---|