Cargando…

Performances of full cross-validation partial least squares regression models developed using Raman spectral data for the prediction of bull beef sensory attributes

The data presented in this article are related to the research article entitled “Application of Raman spectroscopy and chemometric techniques to assess sensory characteristics of young dairy bull beef” [1]. Partial least squares regression (PLSR) models were developed on Raman spectral data pre-trea...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Ming, Nian, Yingqun, Allen, Paul, Downey, Gerard, Kerry, Joseph P., O’Donnell, Colm P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6141602/
https://www.ncbi.nlm.nih.gov/pubmed/30246069
http://dx.doi.org/10.1016/j.dib.2018.04.056
Descripción
Sumario:The data presented in this article are related to the research article entitled “Application of Raman spectroscopy and chemometric techniques to assess sensory characteristics of young dairy bull beef” [1]. Partial least squares regression (PLSR) models were developed on Raman spectral data pre-treated using Savitzky Golay (S.G.) derivation (with 2nd or 5th order polynomial baseline correction) and results of sensory analysis on bull beef samples (n = 72). Models developed using selected Raman shift ranges (i.e. 250–3380 cm(−1), 900–1800 cm(−1) and 1300–2800 cm(−1)) were explored. The best model performance for each sensory attributes prediction was obtained using models developed on Raman spectral data of 1300–2800 cm(−1).